PLANAR 804/1 Vector Network Analyzer

Operating Manual
TABLE OF CONTENTS

INTRODUCTION

8

SAFETY INSTRUCTIONS

9

1 GENERAL OVERVIEW

1.1 Description... 11

1.2 Specifications.. 11

1.2.1 Basic Specifications.. 11

1.2.2 Supplemental Specifications....................................... 13

1.2.3 Measurement Capabilities.. 14

1.3 Ordering Information... 20

1.3.1 Standard Accessories.. 20

1.4 Principle of Operation.. 20

2 PREPARATION FOR USE

22

2.1 General Information... 22

2.2 Software Installation.. 22

2.3 Front Panel... 24

2.3.1 Power Switch.. 24

2.3.2 Test Ports... 25

2.4 Rear Panel... 26

2.4.1 Power Cable Receptacle... 26

2.4.2 External Trigger Signal Input Connector..................... 27

2.4.3 External Reference Frequency Input Connector........... 27

2.4.4 Internal Reference Frequency Output Connector.......... 27

2.4.5 USB 2.0 High Speed... 27

2.4.6 Reserved Port.. 27

3 GETTING STARTED

28

3.1 Analyzer Preparation for Reflection Measurement........... 29

3.2 Analyzer Presetting... 29

3.3 Stimulus Setting... 29

3.4 IF Bandwidth Setting... 30

3.5 Number of Traces, Measured Parameter and Display Format Setting ... 30

3.6 Trace Scale Setting... 32

3.7 Analyzer Calibration for Reflection Coefficient Measurement.. 32

3.8 SWR and Reflection Coefficient Phase Analysis Using Markers.. 34

4 MEASUREMENT CONDITIONS SETTING

36

4.1 Screen Layout and Functions.. 36

4.1.1 Softkey Menu Bar... 36

4.1.2 Menu Bar.. 38

4.1.3 Instrument Status Bar.. 39

4.2 Channel Window Layout and Functions........................ 40
4.2.1 Channel Title Bar .. 41
4.2.2 Trace Status Field .. 42
4.2.3 Graph Area ... 44
4.2.4 Trace Layout in Channel Window.. 45
4.2.5 Markers .. 46
4.2.6 Channel Status Bar .. 47

4.3 Quick Channel Setting Using Mouse .. 51
4.3.1 Active Channel Selection ... 51
4.3.2 Active Trace Selection ... 51
4.3.3 Measured Data Setting ... 51
4.3.4 Display Format Setting .. 51
4.3.5 Trace Scale Setting .. 52
4.3.6 Reference Level Setting .. 52
4.3.7 Reference Level Position ... 53
4.3.8 Sweep Start Setting ... 53
4.3.9 Sweep Stop Setting .. 53
4.3.10 Sweep Center Setting .. 53
4.3.11 Sweep Span Setting ... 53
4.3.12 Marker Stimulus Value Setting ... 54
4.3.13 Switching between Start/Center and Stop/Span Modes .. 54
4.3.14 Start/Center Value Setting ... 54
4.3.15 Stop/Span Value Setting ... 54
4.3.16 Sweep Points Number Setting .. 54
4.3.17 Sweep Type Setting ... 55
4.3.18 IF Bandwidth Setting .. 55
4.3.19 Power Level / CW Frequency Setting .. 55

4.4 Channel and Trace Display Setting ... 56
4.4.1 Channel Window Allocating ... 56
4.4.2 Number of Traces Setting ... 57
4.4.3 Trace Allocating .. 58
4.4.4 Trace/Channel Activating ... 61
4.4.5 Active Trace/Channel Window Maximizing .. 61

4.5 Stimulus Setting .. 62
4.5.1 Sweep Type Setting ... 62
4.5.2 Sweep Span Setting ... 63
4.5.3 Sweep Points Setting ... 63
4.5.4 Stimulus Power Setting .. 63
4.5.5 Power Slope Feature .. 64
4.5.6 CW Frequency Setting ... 64
4.5.7 RF Out Function ... 64
4.5.8 Segment Table Editing ... 65
4.5.9 Measurement Delay ... 67

4.6 Trigger Setting .. 68

4.7 Measurement Parameters Setting .. 70
4.7.1 S-Parameters .. 70
4.7.2 S-Parameter Setting .. 71
4.7.3 Absolute Measurements ... 71
4.7.4 Absolute Measurement Setting .. 72

4.8 Format Setting ... 73
4.8.1 Rectangular Formats .. 73
4.8.2 Polar Format .. 75
4.8.3 Smith Chart Format .. 76
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8.4</td>
<td>Data Format Setting</td>
<td>78</td>
</tr>
<tr>
<td>4.9</td>
<td>Scale Setting</td>
<td>80</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Rectangular Scale</td>
<td>80</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Rectangular Scale Setting</td>
<td>80</td>
</tr>
<tr>
<td>4.9.3</td>
<td>Circular Scale</td>
<td>81</td>
</tr>
<tr>
<td>4.9.4</td>
<td>Circular Scale Setting</td>
<td>81</td>
</tr>
<tr>
<td>4.9.5</td>
<td>Automatic Scaling</td>
<td>81</td>
</tr>
<tr>
<td>4.9.6</td>
<td>Reference Level Automatic Selection</td>
<td>82</td>
</tr>
<tr>
<td>4.9.7</td>
<td>Electrical Delay Setting</td>
<td>82</td>
</tr>
<tr>
<td>4.9.8</td>
<td>Phase Offset Setting</td>
<td>83</td>
</tr>
<tr>
<td>4.10</td>
<td>Measurement Optimizing</td>
<td>84</td>
</tr>
<tr>
<td>4.10.1</td>
<td>IF Bandwidth Setting</td>
<td>84</td>
</tr>
<tr>
<td>4.10.2</td>
<td>Averaging Setting</td>
<td>84</td>
</tr>
<tr>
<td>4.10.3</td>
<td>Smoothing Setting</td>
<td>85</td>
</tr>
<tr>
<td>4.11</td>
<td>Mixer Measurements</td>
<td>86</td>
</tr>
<tr>
<td>4.11.1</td>
<td>Mixer Measurement Methods</td>
<td>86</td>
</tr>
<tr>
<td>4.11.2</td>
<td>Frequency Offset Mode</td>
<td>87</td>
</tr>
<tr>
<td>4.11.3</td>
<td>Automatic Adjustment of Offset Frequency</td>
<td>89</td>
</tr>
<tr>
<td>4.11.3.1</td>
<td>Setting of Offset Frequency Automatic Adjustment</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>CALIBRATION AND CALIBRATION KIT</td>
<td>92</td>
</tr>
<tr>
<td>5.1</td>
<td>General Information</td>
<td>92</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Measurement Errors</td>
<td>92</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Systematic Errors</td>
<td>93</td>
</tr>
<tr>
<td>5.1.2.1</td>
<td>Directivity Error</td>
<td>93</td>
</tr>
<tr>
<td>5.1.2.2</td>
<td>Source Match Error</td>
<td>93</td>
</tr>
<tr>
<td>5.1.2.3</td>
<td>Load Match Error</td>
<td>93</td>
</tr>
<tr>
<td>5.1.2.4</td>
<td>Isolation Error</td>
<td>94</td>
</tr>
<tr>
<td>5.1.2.5</td>
<td>Reflection Tracking Error</td>
<td>94</td>
</tr>
<tr>
<td>5.1.2.6</td>
<td>Transmission Tracking Error</td>
<td>94</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Error Modeling</td>
<td>95</td>
</tr>
<tr>
<td>5.1.3.1</td>
<td>One-Port Error Model</td>
<td>95</td>
</tr>
<tr>
<td>5.1.3.2</td>
<td>Two-Port Error Model</td>
<td>96</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Analyzer Test Ports Defining</td>
<td>97</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Calibration Steps</td>
<td>98</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Calibration Methods</td>
<td>99</td>
</tr>
<tr>
<td>5.1.6.1</td>
<td>Normalization</td>
<td>100</td>
</tr>
<tr>
<td>5.1.6.2</td>
<td>Directivity Calibration (Optional)</td>
<td>100</td>
</tr>
<tr>
<td>5.1.6.3</td>
<td>Isolation Calibration (Optional)</td>
<td>100</td>
</tr>
<tr>
<td>5.1.6.4</td>
<td>Full One-Port Calibration</td>
<td>101</td>
</tr>
<tr>
<td>5.1.6.5</td>
<td>One-Path Two-Port Calibration</td>
<td>101</td>
</tr>
<tr>
<td>5.1.6.6</td>
<td>Full Two-Port Calibration</td>
<td>101</td>
</tr>
<tr>
<td>5.1.6.7</td>
<td>Sliding Load Calibration</td>
<td>102</td>
</tr>
<tr>
<td>5.1.6.8</td>
<td>Unknown Thru Calibration</td>
<td>102</td>
</tr>
<tr>
<td>5.1.6.9</td>
<td>TRL Calibration</td>
<td>103</td>
</tr>
<tr>
<td>5.1.7</td>
<td>Calibration Standards and Calibration Kits</td>
<td>105</td>
</tr>
<tr>
<td>5.1.7.1</td>
<td>Definitions and Classes of Calibration Standards</td>
<td>105</td>
</tr>
<tr>
<td>5.1.7.2</td>
<td>Types of Calibration Standards</td>
<td>105</td>
</tr>
<tr>
<td>5.1.7.3</td>
<td>Methods of Calibration Standard Defining</td>
<td>106</td>
</tr>
<tr>
<td>5.1.7.4</td>
<td>Calibration Standard Model</td>
<td>106</td>
</tr>
<tr>
<td>5.1.7.5</td>
<td>Data-Based Calibration Standards</td>
<td>108</td>
</tr>
<tr>
<td>5.1.7.6</td>
<td>Scope of Calibration Standard Definition</td>
<td>108</td>
</tr>
<tr>
<td>5.1.7.7</td>
<td>Classes of Calibration Standards</td>
<td>110</td>
</tr>
</tbody>
</table>
5.1.7.8 Subclasses of Calibration Standards .. 111

5.2 Calibration Procedures ... 112
5.2.1 Calibration Kit Selection .. 112
5.2.2 Reflection Normalization .. 113
5.2.3 Transmission Normalization .. 115
5.2.4 Full One-Port Calibration .. 117
5.2.5 One-Path Two-Port Calibration .. 119
5.2.6 Full Two-Port Calibration .. 121
5.2.6.1 Unknown Thru Calibration ... 123
5.2.7 TRL Calibration ... 124
5.2.8 Calibration Using Subclasses ... 126
5.2.9 Calibration Using Sliding Load ... 127
5.2.10 Error Correction Disabling .. 128
5.2.11 Error Correction Status .. 128
5.2.12 System Impedance Z_0 ... 129
5.2.13 Port Extension .. 130

5.3 Calibration Kit Management ... 132
5.3.1 Table of Calibration Kits .. 132
5.3.1.1 Calibration Kit Selection for Editing ... 133
5.3.1.2 Calibration Kit Label and Description Editing .. 133
5.3.1.3 Predefined Calibration Kit Restoration ... 134
5.3.1.4 User-Defined Calibration Kit Deleting ... 134
5.3.1.5 Calibration Kit Saving to File .. 134
5.3.1.6 Calibration Kit Loading from File .. 134
5.3.2 Calibration Standard Definition .. 135
5.3.2.1 Standard Adding to Calibration Kit ... 136
5.3.2.2 Standard Deleting from Calibration Kit ... 136
5.3.2.3 Calibration Standard Editing ... 136
5.3.2.4 Calibration Standard Copy/Paste Function ... 137
5.3.2.5 Management of Sequence in Standard Table ... 138
5.3.3 Table of Calibration Standard S-Parameters .. 139
5.3.3.1 Line Adding to Table .. 140
5.3.3.2 Line Deleting from Table ... 140
5.3.3.3 Table Clearing ... 140
5.3.3.4 Table Format Selecting ... 140
5.3.3.5 Port Reversing ... 141
5.3.3.6 Data Opening from File ... 141
5.3.4 Calibration Standard Class Assignment .. 142
5.3.4.1 Standard Class Table Editing ... 142
5.3.4.2 Standard Deleting from Standard Class Table 143
5.3.4.3 Strict Class Assignment Function ... 143
5.3.4.4 Function of Group Assignment of Port Number 144

5.4 Power Calibration ... 145
5.4.1 Loss Compensation Table .. 145
5.4.2 Power Calibration Procedure ... 146
5.4.3 Power Correction Setting .. 146
5.4.4 Loss Compensation Table Editing ... 146

5.5 Receiver Calibration ... 148
5.5.1 Receiver Calibration Procedure .. 148
5.5.2 Receiver Correction Setting .. 149

5.6 Scalar Mixer Calibration ... 150

5.7 Vector Mixer Calibration ... 154
6 MEASUREMENT DATA ANALYSIS

6.1 Markers ... 157
 6.1.1 Marker Adding ... 159
 6.1.2 Marker Deleting.. 159
 6.1.3 Marker Stimulus Value Setting .. 159
 6.1.4 Marker Activating ... 160
 6.1.5 Reference Marker Feature .. 161
 6.1.6 Marker Properties .. 162
 6.1.6.1 Marker Coupling Feature ... 162
 6.1.6.2 Marker Table ... 163
 6.1.6.3 Marker Value Indication Capacity .. 164
 6.1.6.4 Multi Marker Data Display .. 164
 6.1.6.5 Marker Data Arranging .. 165
 6.1.6.6 Marker Data Alignment .. 165
 6.1.6.7 Memory Trace Value Display ... 166
 6.1.7 Marker Position Search Functions .. 168
 6.1.7.1 Search for Maximum and Minimum .. 168
 6.1.7.2 Search for Peak .. 169
 6.1.7.3 Search for Target Level ... 169
 6.1.7.4 Search Tracking .. 171
 6.1.7.5 Search Range .. 171
 6.1.8 Marker Math Functions ... 173
 6.1.8.1 Trace Statistics ... 173
 6.1.8.2 Bandwidth Search .. 175
 6.1.8.3 Flatness .. 176
 6.1.8.4 RF Filter Statistics .. 177
 6.1.9 Marker Functions .. 178

6.2 Memory Trace Function .. 180
 6.2.1 Saving Trace into Memory ... 181
 6.2.2 Trace Display Setting ... 181
 6.2.3 Mathematical Operations ... 182

6.3 Fixture Simulation ... 183
 6.3.1 Port Z Conversion .. 184
 6.3.2 De-embedding .. 184
 6.3.3 Embedding .. 186

6.4 Time Domain Transformation ... 189
 6.4.1 Time Domain Transformation Activating ... 190
 6.4.2 Time Domain Transformation Span ... 190
 6.4.3 Time Domain Transformation Type .. 191
 6.4.4 Time Domain Transformation Window Shape Setting 191
 6.4.5 Frequency Harmonic Grid Setting .. 192

6.5 Time Domain Gating .. 193
 6.5.1 Time Domain Gate Activating ... 194
 6.5.2 Time Domain Gate Span ... 194
 6.5.3 Time Domain Gate Type ... 195
 6.5.4 Time Domain Gate Shape Setting ... 195

6.6 S-Parameter Conversion ... 196

6.7 Limit Test ... 198
 6.7.1 Limit Line Editing ... 199
 6.7.2 Limit Test Enabling/Disabling ... 200
6.7.3 Limit Test Display Management 200
6.7.4 Limit Line Offset .. 201
6.8 Ripple Limit Test .. 202
6.8.1 Ripple Limit Editing ... 203
6.8.2 Ripple Limit Enabling/Disabling 205
6.8.3 Ripple Limit Test Display Management 205

7 ANALYZER DATA OUTPUT .. 206
7.1 Analyzer State ... 206
7.1.1 Analyzer State Saving .. 207
7.1.2 Analyzer State Recalling .. 208
7.2 Channel State ... 209
7.2.1 Channel State Saving .. 209
7.2.2 Channel State Recalling .. 209
7.3 Trace Data CSV File .. 210
7.3.1 CSV File Saving/Recalling 210
7.4 Trace Data Touchstone File .. 211
7.4.1 Touchstone File Saving/Recalling 212

8 SYSTEM SETTINGS ... 214
8.1 Analyzer Presetting ... 214
8.2 Graph Printing ... 214
8.3 Reference Frequency Oscillator Selection 215
8.4 System Correction Setting .. 216
8.5 Beeper Setting ... 217
8.6 User Interface Setting .. 218
8.7 Screen Update Setting ... 222
8.8 Power Meter Setting ... 223

9 MAINTENANCE AND STORAGE 225
9.1 Maintenance Procedures ... 225
9.1.1 Instrument Cleaning ... 225
9.1.2 Factory Calibration ... 225
9.1.3 Performance Test ... 226
9.2 Storage Instructions .. 226

10 WARRANTY INFORMATION 227

Appendix 1 — Default Settings Table 228
INTRODUCTION

This Operating Manual represents design, specifications, overview of functions, and detailed operation procedure of PLANAR 804/1 Network Analyzer, to ensure effective and safe use of the technical capabilities of the instrument by the user.

Network Analyzer operation and maintenance should be performed by qualified engineers with initial experience in operating of microwave circuits and PC.

The following abbreviations are used in this Manual:

PC – Personal Computer
DUT – Device Under Test
IF – Intermediate Frequency
CW – Continuous Wave
SWR – Standing Wave Ratio
SAFETY INSTRUCTIONS

Carefully read through the following safety instructions before putting the Analyzer into operation. Observe all the precautions and warnings provided in this Manual for all the phases of operation, service, and repair of the Analyzer.

The Analyzer must be used only by skilled and specialized staff or thoroughly trained personnel with the required skills and knowledge of safety precautions.

PLANAR 804/1 complies with INSTALLATION CATEGORY II as well as POLLUTION DEGREE 2 in IEC61010–1.

PLANAR 804/1 is MEASUREMENT CATEGORY I (CAT I). Do not use for CAT II, III, or IV.

PLANAR 804/1 is for INDOOR USE only.

PLANAR 804/1 is tested in stand-alone condition or in combination with the accessories supplied by PLANAR against the requirement of the standards described in the Declaration of Conformity. If it is used as a system component, compliance of related regulations and safety requirements are to be confirmed by the builder of the system.

Never operate the Analyzer in the environment containing inflammable gasses or fumes.

Operators must not remove the cover or part of the housing. The Analyzer must not be repaired by the operator. Component replacement or internal adjustment must be performed by qualified maintenance personnel only.

Never operate the Analyzer if the power cable is damaged.

Never connect the test terminals to mains.

Electrostatic discharge can damage your Analyzer when connected or disconnected from the DUT. Static charge can build up on your body and damage the sensitive circuits of internal components of both the Analyzer and the DUT. To avoid damage from electric discharge, observe the following:

- Always use a desktop antistatic mat under the DUT.
- Always wear a grounding wrist strap connected to the desktop antistatic mat via daisy-chained 1 MΩ resistor.
- Connect \(\downarrow \) clamp on the body of the Analyzer to the body of the DUT before you start operation.

Observe all the general safety precautions related to operation of equipment powered by mains.
The definitions of safety symbols used on the instrument or in the Manual are listed below.

⚠️ Refers to the Manual if the instrument is marked with this symbol.

∼ Alternating current.

== Direct current.

<table>
<thead>
<tr>
<th>On (Supply).</th>
</tr>
</thead>
</table>

○ Off (Supply).

|--| A chassis terminal; a connection to the instrument’s chassis, which includes all exposed metal structure.

WARNING

This sign denotes a hazard. It calls attention to a procedure, practice, or condition that, if not correctly performed or adhered to, could result in injury or death to personnel.

CAUTION

This sign denotes a hazard. It calls attention to a procedure, practice, or condition that, if not correctly performed or adhered to, could result in damage to or destruction of part or of the whole instrument.

Note

This sign denotes important information. It calls attention to a procedure, practice, or condition that is essential for the user to understand.
1 GENERAL OVERVIEW

1.1 Description

PLANAR 804/1 Network Analyzer is designed for use in the process of development, adjustment and testing of various electronic devices in industrial and laboratory facilities, including operation as a component of an automated measurement system. PLANAR 804/1 is designed for operation with external PC, which is not supplied with the Analyzer.

1.2 Specifications

1.2.1 Basic Specifications

Table 1.1 Basic Specifications

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>300 kHz to 8.0 GHz</td>
<td></td>
</tr>
<tr>
<td>CW frequency accuracy</td>
<td>±5x10^-6</td>
<td></td>
</tr>
<tr>
<td>Harmonic distortion</td>
<td>-25 dB</td>
<td></td>
</tr>
<tr>
<td>Non harmonic spurious</td>
<td>-30 dB</td>
<td></td>
</tr>
<tr>
<td>Output power level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- frequency range 300 kHz to 6.0 GHz</td>
<td>-60 dBm to +10 dBm</td>
<td></td>
</tr>
<tr>
<td>- frequency range 6.0 GHz to 8.0 GHz</td>
<td>-60 dBm to +5 dBm</td>
<td></td>
</tr>
<tr>
<td>Output power level accuracy</td>
<td>±1.0 dB</td>
<td></td>
</tr>
<tr>
<td>Magnitude transmission measurement accuracy(^1), if (</td>
<td>S_{11}</td>
<td>) and (</td>
</tr>
<tr>
<td>+5 dB to +15 dB</td>
<td>0.2 dB</td>
<td></td>
</tr>
<tr>
<td>-50 dB to +5 dB</td>
<td>0.1 dB</td>
<td></td>
</tr>
<tr>
<td>-70 dB to -50 dB</td>
<td>0.2 dB</td>
<td></td>
</tr>
<tr>
<td>-90 dB to -70 dB</td>
<td>1.0 dB</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) The specifications of the Analyzer apply over the temperature range of 23°C ±5°C (unless otherwise specified) after 40 minutes of warming-up, with less than 1°C deviation from the full two-port calibration temperature, at output power of –5 dBm, and IF bandwidth 1 Hz.
<table>
<thead>
<tr>
<th>Table 1.1 (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>Phase transmission measurement accuracy1, if $</td>
</tr>
<tr>
<td>Magnitude reflection measurement accuracy1, if $</td>
</tr>
<tr>
<td>Phase reflection measurement accuracy1, if $</td>
</tr>
<tr>
<td>Receiver noise floor (IF bandwidth 10 Hz)</td>
</tr>
<tr>
<td>Trace noise (IF bandwidth 3 kHz)</td>
</tr>
<tr>
<td>Uncorrected directivity</td>
</tr>
<tr>
<td>Uncorrected source match</td>
</tr>
<tr>
<td>Uncorrected load match</td>
</tr>
<tr>
<td>AC mains voltage</td>
</tr>
<tr>
<td>Power consumption</td>
</tr>
<tr>
<td>Dimensions L x W x H</td>
</tr>
</tbody>
</table>

1 The specifications of the Analyzer apply over the temperature range of $23^\circ\text{C} \pm 5^\circ\text{C}$ (unless otherwise specified) after 40 minutes of warming-up, with less than 1°C deviation from the full two-port calibration temperature, at output power of $-5\,\text{dBm}$, and IF bandwidth 1 Hz.
Table 1.1 (continued)

<table>
<thead>
<tr>
<th>Weight</th>
<th>7 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating conditions:</td>
<td></td>
</tr>
<tr>
<td>– environmental temperature</td>
<td>5°C to 40°C</td>
</tr>
<tr>
<td>– humidity at 25°C</td>
<td>90%</td>
</tr>
<tr>
<td>– atmospheric pressure</td>
<td>84 to 106.7 kPa</td>
</tr>
</tbody>
</table>

1.2.2 Supplemental Specifications

Source stability within operating temperature range: ±5×10^{-6}.

Frequency resolution: 1 Hz.

Measurement time per test point: 100 μs.

Source to receiver port switchover time: less than 10 ms.

Power level resolution: 0.05 dB.

IF bandwidth settings: from 1 Hz to 30 kHz with step of 1/1.5/2/3/5/7.

External reference frequency is 10 MHz, input level is 2 dBm ± 2 dB, input impedance at «10 MHz» input is 50 Ω. Connector type is BNC female.

Output reference signal level is 3 dBm ± 2 dB at 50 Ω impedance. «OUT 10 MHz» connector type is BNC female.

Connector for external trigger source is BNC female. TTL compatible inputs of 3 V to 5 V magnitude have more than 1 μs pulse width. Input impedance at least 10 kΩ.

Effective directivity: 45 dB.

Effective source match: 40 dB.

Effective load match: 45 dB.

Dependence of $|S_{21}|$ or $|S_{11}|$ parameter of 0 dB per 1 degree variation of environment temperature is less than 0.025 dB.

Warm-up time: 40 min.
1.2.3 Measurement Capabilities

<table>
<thead>
<tr>
<th>Measured parameters</th>
<th>$S_{11}, S_{21}, S_{12}, S_{22}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute power of the reference and received signals at the port.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of measurement channels</th>
<th>Up to 16 logical channels. Each logical channel is represented on the screen as an individual channel window. A logical channel is defined by such stimulus signal settings as frequency range, number of test points, power level, etc.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Data traces</th>
<th>Up to 16 data traces can be displayed in each channel window. A data trace represents one of the following parameters of the DUT: S-parameters, response in time domain, input power response.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Memory traces</th>
<th>Each of the 16 data traces can be saved into memory for further comparison with the current values.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Data display formats</th>
<th>Logarithmic magnitude, linear magnitude, phase, expanded phase, group delay, SWR, real part, imaginary part, Smith chart format and polar format.</th>
</tr>
</thead>
</table>

Sweep setup features

<table>
<thead>
<tr>
<th>Sweep type</th>
<th>Linear frequency sweep, logarithmic frequency sweep, and segment frequency sweep, when the stimulus power is a fixed value; and linear power sweep when frequency is a fixed value.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Measured points per sweep</th>
<th>From 2 to 100,001.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Segment sweep</th>
<th>A frequency sweep within several user-defined segments. Frequency range, number of sweep points, source power, and IF bandwidth should be set for each segment.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Power settings</th>
<th>Source power from -60 dBm to $+10$ dBm with resolution of 0.05 dB. In frequency sweep mode the power slope can be set to up to 2 dB/GHz for compensation of high frequency attenuation in cables.</th>
</tr>
</thead>
</table>

|---------------|--|
Trace display functions

<table>
<thead>
<tr>
<th>Trace display</th>
<th>Data trace, memory trace, or simultaneous indication of data and memory traces.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace math</td>
<td>Data trace modification by math operations: addition, subtraction, multiplication or division of measured complex values and memory data.</td>
</tr>
<tr>
<td>Autoscaling</td>
<td>Automatic selection of scale division and reference level value to have the trace most effectively displayed.</td>
</tr>
<tr>
<td>Electrical delay</td>
<td>Calibration plane moving to compensate for the delay in the test setup. Compensation for electrical delay in a DUT during measurements of deviation from linear phase.</td>
</tr>
<tr>
<td>Phase offset</td>
<td>Phase offset defined in degrees.</td>
</tr>
</tbody>
</table>

Accuracy enhancement

<table>
<thead>
<tr>
<th>Calibration</th>
<th>Calibration of a test setup (which includes the Analyzer, cables, and adapters) significantly increases the accuracy of measurements. Calibration allows for correction of the errors caused by imperfections in the measurement system: system directivity, source and load match, tracking and isolation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration methods</td>
<td>The following calibration methods of various sophistication and accuracy enhancement level are available:</td>
</tr>
<tr>
<td></td>
<td>- reflection and transmission normalization;</td>
</tr>
<tr>
<td></td>
<td>- full one-port calibration;</td>
</tr>
<tr>
<td></td>
<td>- one-path two-port calibration</td>
</tr>
<tr>
<td></td>
<td>- full two-port calibration;</td>
</tr>
<tr>
<td></td>
<td>- TRL calibration.</td>
</tr>
<tr>
<td>Reflection and transmission normalization</td>
<td>The simplest calibration method. It provides low accuracy.</td>
</tr>
<tr>
<td>Full one-port calibration</td>
<td>Method of calibration performed for one-port reflection measurements. It ensures high accuracy.</td>
</tr>
<tr>
<td>Method</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>One-path two-port calibration</td>
<td>Method of calibration performed for reflection and one-way transmission measurements, for example for measuring S_{11} and S_{21} only. It ensures high accuracy for reflection measurements, and mean accuracy for transmission measurements.</td>
</tr>
<tr>
<td>Full two-port calibration</td>
<td>Method of calibration performed for full S-parameter matrix measurement of a two-port DUT. It ensures high accuracy.</td>
</tr>
<tr>
<td>TRL calibration</td>
<td>Method of calibration performed for full S-parameter matrix measurement of a two-port DUT. LRL and LRM types of this calibration are also supported. In ensures higher accuracy than a two-port calibration.</td>
</tr>
<tr>
<td>Mechanical calibration kits</td>
<td>The user can select one of the predefined calibration kits of various manufacturers or define own calibration kits.</td>
</tr>
<tr>
<td>Electronic calibration modules</td>
<td>Electronic calibration modules manufactured by PLANAR make the Analyzer calibration faster and easier than traditional mechanical calibration.</td>
</tr>
<tr>
<td>Sliding load calibration standard</td>
<td>The use of sliding load calibration standard allows significant increase in calibration accuracy at high frequencies compared to the fixed load calibration standard.</td>
</tr>
<tr>
<td>Unknown thru calibration standard</td>
<td>The use of an arbitrary reciprocal two-port device instead of a zero-length thru during a full two-port calibration allows for calibration of the test setup for measurements of the non-insertable devices.</td>
</tr>
<tr>
<td>Defining of calibration standards</td>
<td>Different methods of calibration standard defining are available:</td>
</tr>
<tr>
<td></td>
<td>▪ standard defining by polynomial model</td>
</tr>
<tr>
<td></td>
<td>▪ standard defining by data (S-parameters).</td>
</tr>
<tr>
<td>Error correction interpolation</td>
<td>When the user changes such settings as start/stop frequencies and number of sweep points, compared to the settings of calibration, interpolation or extrapolation of the calibration coefficients will be applied.</td>
</tr>
</tbody>
</table>
Supplemental calibration methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power calibration</td>
<td>Method of calibration, which allows more stable maintaining of the power level setting at the DUT input. An external power meter should be connected to the USB port directly or via USB/GPIB adapter.</td>
</tr>
<tr>
<td>Receiver calibration</td>
<td>Method of calibration, which calibrates the receiver gain at absolute signal power measurement.</td>
</tr>
</tbody>
</table>

Marker functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data markers</td>
<td>Up to 16 markers for each trace. A marker indicates stimulus value and the measured value in a given point of the trace.</td>
</tr>
<tr>
<td>Reference marker</td>
<td>Enables indication of any maker values as relative to the reference marker.</td>
</tr>
<tr>
<td>Marker search</td>
<td>Search for max, min, peak, or target values on a trace.</td>
</tr>
<tr>
<td>Marker search additional features</td>
<td>User-definable search range. Functions of specific condition tracking or single operation search.</td>
</tr>
<tr>
<td>Setting parameters by markers</td>
<td>Setting of start, stop and center frequencies by the stimulus value of the marker and setting of reference level by the response value of the marker.</td>
</tr>
<tr>
<td>Marker math functions</td>
<td>Statistics, bandwidth, flatness, RF filter.</td>
</tr>
<tr>
<td>Statistics</td>
<td>Calculation and display of mean, standard deviation and peak-to-peak in a frequency range limited by two markers on a trace.</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Determines bandwidth between cutoff frequency points for an active marker or absolute maximum. The bandwidth value, center frequency, lower frequency, higher frequency, Q value, and insertion loss are displayed.</td>
</tr>
<tr>
<td>Flatness</td>
<td>Displays gain, slope, and flatness between two markers on a trace.</td>
</tr>
<tr>
<td>RF filter</td>
<td>Displays insertion loss and peak-to-peak ripple of the passband, and the maximum signal magnitude in the stopband. The passband and stopband are defined by two pairs of markers.</td>
</tr>
</tbody>
</table>
Data analysis

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port impedance conversion</td>
<td>The function of conversion of the S-parameters measured at 50 Ω port into the values, which could be determined if measured at a test port with arbitrary impedance.</td>
</tr>
<tr>
<td>De-embedding</td>
<td>The function allows to mathematically exclude from the measurement result the effect of the fixture circuit connected between the calibration plane and the DUT. This circuit should be described by an S-parameter matrix in a Touchstone file.</td>
</tr>
<tr>
<td>Embedding</td>
<td>The function allows to mathematically simulate the DUT parameters after virtual integration of a fixture circuit between the calibration plane and the DUT. This circuit should be described by an S-parameter matrix in a Touchstone file.</td>
</tr>
<tr>
<td>S-parameter conversion</td>
<td>The function allows conversion of the measured S-parameters to the following parameters: reflection impedance and admittance, transmission impedance and admittance, and inverse S-parameters.</td>
</tr>
<tr>
<td>Time domain transformation</td>
<td>The function performs data transformation from frequency domain into response of the DUT to various stimulus types in time domain. Modeled stimulus types: bandpass, lowpass impulse, and lowpass step. Time domain span is set by the user arbitrarily from zero to maximum, which is determined by the frequency step. Windows of various forms for better tradeoff between resolution and level of spurious sidelobes.</td>
</tr>
<tr>
<td>Time domain gating</td>
<td>The function mathematically removes unwanted responses in time domain what allows for obtaining frequency response without influence from the fixture elements. The function applies reverse transformation back to frequency domain to the user-defined span in time domain. Gating filter types: bandpass or notch. For better tradeoff between gate resolution and level of spurious sidelobes the following filter shapes are available: maximum, wide, normal and minimum.</td>
</tr>
</tbody>
</table>
Mixer / converter measurements

Scalar mixer / converter measurements	The scalar method allows measurement of scalar transmission S-parameters of mixers and other devices having different input and output frequencies. No external mixers or other devices are required. The scalar method employs port frequency offset when there is difference between receiver frequency and source frequency.
Vector mixer / converter measurements	The vector method allows measuring of the mixer transmission S-parameter magnitude and phase. The method requires an external mixer and a LO common for both the external mixer and the mixer under test.
Scalar mixer / converter calibration	The most accurate method of calibration applied for measurements of mixers in frequency offset mode. The OPEN, SHORT, and LOAD calibration standards are used. An external power meter should be connected to the USB port directly or via USB/GPIB adapter.
Vector mixer / converter calibration	Method of calibration applied for vector mixer measurements. The OPEN, SHORT and LOAD calibration standards are used.
Automatic adjustment of frequency offset	The function performs automatic frequency offset adjustment when the scalar mixer / converter measurements are performed to compensate for internal LO setting inaccuracy in the DUT.

Other features

Familiar graphical user interface	Graphical user interface based on Windows operating system ensures fast and easy Analyzer operation by the user.
Analyzer control	Using personal computer.
Printout/saving of traces	The traces and data printout function has preview feature. The preview, saving and printout can be performed using MS Word, Image Viewer for Windows, or Analyzer Print Wizard.

Remote control

| **COM/DCOM** | Remote control over COM/DCOM. COM automation runs the user program on Analyzer PC. DCOM automation runs the user program on a LAN networked PC. |
1.3 Ordering Information

1.3.1 Standard Accessories

The standard accessories supplied with the PLANAR 804/1 Network Analyzer are as follows:

- Power Cable 1 pc
- CD with software 1 pc
- Operating Manual 1 pc

1.4 Principle of Operation

PLANAR 804/1 Network Analyzer consists of the Analyzer Unit, some supplementary accessories, and personal computer (which is not supplied with the package). The Analyzer Unit is connected to PC via USB-interface. The block diagram of the Analyzer is represented in figure 1.1.

The Analyzer Unit consists of source oscillator, local oscillator, source power attenuator, and switch transferring the source signal to two directional couplers, which are ending with port 1 and port 2 connectors. The incident and reflected waves from the directional couplers are supplied into the mixers, where they are converted into first IF (10.7 MHz), and are transferred further to the 4-Channel receiver. The 4-Channel receiver, after filtration, produces the signal of second IF (about 30 kHz), then digitally encodes it and supplies for further processing (filtration, phase difference estimation, magnitude measurement) into the signal processor. The filters for the second IF are digital and have passband from 1 Hz to 30 kHz. Each port of the Analyzer can be a source of the tested signal as well as a receiver of the signal transferred thought the DUT. If port 1 is a source, port 2 will be a receiver. The definition “incident and reflected” wave is correct for the port, when it is a source of the test signal. The combination of the assemblies of directional couplers, mixers and 4-Channel receiver forms four similar signal receivers.

An external PC controls the operation of the components of the PLANAR 804/1. To fulfill the S-parameter measurement, the Analyzer supplies the source signal of the assigned frequency from one of the ports to the DUT, then measures magnitude and phase of the signals transmitted and reflected by the DUT, and after that compares these results to the magnitude and phase of the source signal.
Figure 1.1 PLANAR 804/1 Network Analyzer block diagram
2 PREPARATION FOR USE

2.1 General Information

Unpack the Analyzer and other accessories. Check the contents of the package against the list specified in section 1.3.1. Connect your PLANAR 804/1 to the 100 V AC to 240 V AC 50/60 Hz power source by means of the Power Cable supplied with the instrument. Connect the USB port of your Analyzer to the PC using the USB Cable supplied in the package. Install the software (supplied on the CD) onto your PC. The software installation procedure is described below in section 2.2.

Warm-up the Analyzer for 40 minutes after power-on.

Assemble the test setup using cables, connectors, fixtures, etc, which allow DUT connection to the Analyzer.

Perform calibration of the Analyzer. Calibration procedure is described in section 5.

2.2 Software Installation

Connect the Analyzer to your PC via USB interface and install the PLANAR 804/1 software using the CD supplied with the instrument.

<table>
<thead>
<tr>
<th>Minimal system requirements for the PC</th>
<th>WINDOWS 2000/XP/VISTA/7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 GHz Processor</td>
<td></td>
</tr>
<tr>
<td>1 GB RAM</td>
<td></td>
</tr>
<tr>
<td>USB 2.0 High Speed</td>
<td></td>
</tr>
</tbody>
</table>

The supplied CD contains the following software.

<table>
<thead>
<tr>
<th>CD contents</th>
<th>Setup_Obzor804_vX.X.exe(^1) installer file</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>folder Driver contains the driver</td>
</tr>
<tr>
<td></td>
<td>folder Doc contains documentation</td>
</tr>
</tbody>
</table>

\(^1\) X.X – program version number
The procedure of the software installation is broken up into two steps. The first one is the driver installation. The second step comprises installation of the program, documentation and other files.

<table>
<thead>
<tr>
<th>Driver installation</th>
<th>Connect the Analyzer to your PC via the supplied USB cable. It is allowed to connect the USB cable to the running PC.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Turn on and boot the PC, if it is off.</td>
</tr>
<tr>
<td></td>
<td>Turn the Analyzer on by the Power key on the front panel.</td>
</tr>
<tr>
<td></td>
<td>When you connect the Analyzer to the PC for the first time, Windows will automatically detect the new USB device and will open the USB driver installation dialog (Windows 2000/XP/VISTA). In Windows 7, open the USB driver installation dialog as follows: Start > Control Panel > Device Manager. Make the right mouse click on the Unknown Device line and select Update Drivers.</td>
</tr>
<tr>
<td></td>
<td>In the USB driver installation dialog, click on Browse and specify the path to the driver files, which are contained in the \DRIVER folder on the CD and on hard drive in analyzer software folder.</td>
</tr>
<tr>
<td></td>
<td>When the driver is installed, the new USB device (PLANAR Network Analyzer) will appear in the system.</td>
</tr>
</tbody>
</table>

| Program and other files installation | Run the **Setup_Obzor804_vX.X.exe** installer file from the CD. Follow the instructions of the installation wizard. |
2.3 Front Panel

The front view of PLANAR 804/1 is represented in figure 2.1. The front panel is equipped with the following parts:

- Power switch;
- Test ports.

![Figure 2.1 PLANAR 804/1 front panel](image)

2.3.1 Power Switch

Switches the initial condition power supply of the Analyzer on and off.

You can turn your Analyzer on/off at any moment of time. After power-on of the Analyzer connected to PC, Obzor804.exe program will start to upload the microprograms onto the instrument. The uploading process will take 10 sec., after that the Analyzer will be ready for operation.

Note

When you turn on your Analyzer for the first time, the USB driver will be installed onto the PC. The driver installation procedure is described in section 2.2. Some computers may require re-installation of the driver in case of change of the USB port.
2.3.2 Test Ports

The type-N 50 Ω test port 1 and test port 2 are intended for DUT connection. Each test port has a LED indicator. A test port can be used either as a source of the stimulus signal or as a receiver of the response signal of the DUT. Only one of the ports can be the source of the signal in a particular moment of time.

If you connect the DUT to only one test port of the Analyzer, you will be able to measure the reflection parameters (S_{11} or S_{22}) of the DUT.

If you connect the DUT to the both test ports of the Analyzer, you will be able to measure the full S-parameter matrix of the DUT.

<table>
<thead>
<tr>
<th>Note</th>
<th>LED indicator identifies the test port, which is operating as a signal source.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUTION</td>
<td>Do not exceed the maximum allowed power of the input RF signal (or maximum DC voltage) indicated on the front panel. This may damage your Analyzer.</td>
</tr>
</tbody>
</table>
2.4 Rear Panel

The rear view of PLANAR 804/1 is represented in figure 2.2. The rear panel is equipped with the following parts:

- Power cable receptacle;
- External trigger input connector;
- External Reference Frequency input connector;
- Internal Reference Frequency output connector;
- USB 2.0 High Speed;
- Reserved port.

![PLANAR 804/1 rear panel diagram](image)

Figure 2.2 PLANAR 804/1 rear panel

2.4.1 Power Cable Receptacle

Power cable receptacle is intended for 100 V AC to 240 V AC 50/60 Hz power cable connection.
2.4.2 External Trigger Signal Input Connector

This connector allows the user to connect an external trigger source. Connector type is BNC female. TTL compatible inputs of 3 V to 5 V magnitude have up to 1 μs pulse width. Input impedance at least 10 kΩ.

2.4.3 External Reference Frequency Input Connector

External reference frequency is 10 MHz, input level is 2 dBm ± 2 dB, input impedance at «10 MHz» is 50 Ω. Connector type is BNC female.

2.4.4 Internal Reference Frequency Output Connector

Output reference signal level is 3 dBm ± 2 dB at 50 Ω impedance. «OUT 10 MHz» connector type is BNC female.

2.4.5 USB 2.0 High Speed

The USB port is intended for connection to computer.

2.4.6 Reserved Port

Note

Do not use this port.
3 GETTING STARTED

This section represents a sample session of the Analyzer. It describes the main techniques of measurement of reflection coefficient parameters of the DUT. SWR and reflection coefficient phase of the DUT will be analyzed.

For reflection coefficient measurement only one test port of the Analyzer is used. The instrument sends the stimulus to the input of the DUT and then receives the reflected wave. Generally in the process of this measurement the output of the DUT should be terminated with a LOAD standard. The results of these measurements can be represented in various formats.

Typical circuit of reflection coefficient measurement is shown in figure 3.1.

![Figure 3.1 Reflection measurement circuit](image)

To measure SWR and reflection coefficient phases of the DUT, in the given example you should go through the following steps:

- Prepare the Analyzer for reflection measurement;
- Set stimulus parameters (frequency range, number of sweep points);
- Set IF bandwidth;
- Set the number of traces to 2, assign measured parameters and display format to the traces;
- Set the scale of the traces;
- Perform calibration of the Analyzer for reflection coefficient measurement;
3 GETTING STARTED

- Analyze SWR and reflection coefficient phase using markers.

Note

In this section the control over Analyzer is performed by the softkeys located in the right-hand part of the screen. The Analyzer also allows the user to perform quick control by the mouse (See section 4.3).

3.1 Analyzer Preparation for Reflection Measurement

Turn on the Analyzer and warm it up for the period of time stated in the specifications.

Ready state features

The bottom line of the screen displays the instrument status bar. It should read Ready. Above this bar, the channel status bar is located. The sweep indicator in the left-hand part of this bar should display a progress.

Connect the DUT to Port 1 of the Analyzer. Use the appropriate cables and adapters for connection of the DUT input to the Analyzer test port. If the DUT input is type-N (male), you can connect the DUT directly to the port.

3.2 Analyzer Presetting

Before you start the measurement session, it is recommended to reset the Analyzer into the initial (known) condition. The initial condition setting is described in Appendix 1.

To restore the initial condition of the Analyzer, use the following softkeys:

System > Preset > OK

3.3 Stimulus Setting

After you have restored the preset state of the Analyzer, the stimulus parameters will be as follows: frequency range from 300 kHz to 8.0 GHz, sweep type is linear, number of sweep points is 201, and power level is 0 dBm.

For the current example, set the frequency range to from 10 MHz to 3 GHz.
To set the start frequency of the frequency range to 10 MHz, use the following softkeys:

Stimulus > Start

Then enter «1», «0» from the keyboard. Complete the setting by pressing «M» key.

To set the stop frequency of the frequency range to 3 GHz, use the following softkeys:

Stimulus > Stop

Then enter «3» from the keyboard. Complete the setting by pressing «G» key.

To return to the main menu, click the top softkey (colored in blue).

3.4 IF Bandwidth Setting

For the current example, set the IF bandwidth to 3 kHz.

To set the IF bandwidth to 3 kHz, use the following softkeys:

Average > IF Bandwidth

Then enter «3» from the keyboard and complete the setting by pressing «k» key.

To return to the main menu, click the top softkey (colored in blue).

3.5 Number of Traces, Measured Parameter and Display Format Setting

In the current example, two traces are used for simultaneous display of the two parameters (SWR and reflection coefficient phase).

To set the number of traces, use the following softkeys:

Display > Num of Traces > 2
To return to the main menu, click the top softkey (colored in blue).

Before assigning the measurement parameters of a trace, first activate the trace.

To activate the second trace, use the following softkeys:

- **Display > Active Trace/Channel > Active Trace > 2**

To return to the main menu, click the top softkey (colored in blue).

Assign S_{11}-parameter to the second trace. To the first trace this parameter is already assigned by default.

To assign a parameter to the trace, use the following softkeys:

- **Measurement > S11**

Then assign SWR display format to the first trace and reflection coefficient phase display format to the second trace.

To set the active trace display format, use the following softkeys:

- **Format > SWR** (for the first trace),
- **Format > Phase** (for the second trace).

To return to the main menu, click the top softkey (colored in blue).
3.6 Trace Scale Setting

For a convenience in operation, change the trace scale using automatic scaling function.

To set the scale of the active trace by the autoscaling function, use the following softkeys:

Scale > Auto Scale

To return to the main menu, click the top softkey (colored in blue).

3.7 Analyzer Calibration for Reflection Coefficient Measurement

Calibration of the whole measurement setup, which includes the Analyzer, cables and other devices, supporting connection to the DUT, allows to considerably enhance the accuracy of the measurement.

To perform full 1-port calibration, you need to prepare the kit of calibration standards: OPEN, SHORT and LOAD. Such a kit has its description and specifications of the standards. To perform proper calibration, you need to select in the program the correct kit type.

In the process of full 1-port calibration, connect calibration standards to the test port one after another, as shown in figure 3.2.

![Figure 3.2 Full 1-port calibration circuit](image)
In the current example Agilent 85032E calibration kit is used.

To select the calibration kit, use the following softkeys:

Calibration > Cal Kit

Then select the kit you are using, from the table in the bottom of the screen.

To perform full 1-port calibration, execute measurements of the three standards. After that the table of calibration coefficients will be calculated and saved into the memory of the Analyzer. Before you start calibration, disconnect the DUT from the Analyzer.

To perform full 1-port calibration, use the following softkeys:

Calibration > Calibrate > Full 1-Port Cal

Connect an OPEN standard and click **Open**.

Connect a SHORT standard and click **Short**.

Connect a LOAD standard and click **Load**.

To complete the calibration procedure and calculate the table of calibration coefficients, click **Apply** softkey.

Then connect the DUT to the Analyzer port again.
3.8 SWR and Reflection Coefficient Phase Analysis Using Markers

This section describes how to determine the measurement values at three frequency points using markers. The Analyzer screen view is shown in figure 3.3. In the current example, a reflection standard of SWR = 1.2 is used as a DUT.

To enable a new marker, use the following softkeys:

Markers > Add Marker

Then enter the frequency value in the input field in the graph, e.g. to enter frequency 200 MHz, press «2», «0», «0» and «M» keys on the keypad.

Repeat the above procedure three times to enable three markers in different frequency points.

By default only active trace markers are displayed on the screen. To enable display of two traces simultaneously, first activate the marker table.
To open the marker table, use the following softkeys:

Markers > Properties > Marker Table
4 MEASUREMENT CONDITIONS SETTING

4.1 Screen Layout and Functions

The screen layout is represented in figure 4.1. In this section you will find detailed description of the softkey menu bar, menu bar, and instrument status bar. The channel windows will be described in the following section.

Note
The top line of the screen represents the menu bar, which enables you direct access to the submenus of the softkey menu. This menu is an auxiliary one and can be hidden.

The softkey menu bar consists of panels, which appear one instead of the other. Each panel represents one of the submenus of the softkey menu. All the panels are integrated into multilevel menu system and allow access to all the functions of the Analyzer.

Figure 4.1 Analyzer screen layout

4.1.1 Softkey Menu Bar

The softkey menu bar in the right-hand side of the screen is the main menu of the program.
You can manipulate the menu softkeys using a mouse.

Also you can navigate the menu by «↑», «↓», «←», «→», «Enter», «Esc», «Home» keys on the external keyboard.

The types of the softkeys are described below:

<table>
<thead>
<tr>
<th>Softkey</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulus</td>
<td>The top softkey is the menu title key. It enables you to return to the upper level of the menu. If it is displayed in blue you can use keyboard to navigate within the softkey menu.</td>
</tr>
<tr>
<td>Maximum</td>
<td>If the softkey is highlighted in dark gray, pressing «Enter» key on the keyboard will activate the function of this softkey. You can shift the highlight from key to key using «↑» and «↓» arrows on the keyboard.</td>
</tr>
<tr>
<td>Minimum</td>
<td>A large dot on the softkey indicates the current selection in a list of alternative settings.</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>A check mark in the left part of the softkey indicates the active function, which you can switch on/off.</td>
</tr>
<tr>
<td>Peak</td>
<td>The softkey with a right arrow enables the access to the lower level of the menu.</td>
</tr>
<tr>
<td>511</td>
<td>The softkey with a text field allows for the selected function indication.</td>
</tr>
<tr>
<td>Start</td>
<td>The softkey with a value field allows for entering/selection of the numerical settings.</td>
</tr>
<tr>
<td>Down</td>
<td>This navigation softkey appears when the softkey menu overflows the menu screen area. Using this softkey you can scroll down and up the softkey menu.</td>
</tr>
</tbody>
</table>

To navigate in the softkey menu, you can also (additionally to «↑», «↓») use «←», «→», «Esc», «Home» keys of the keyboard:

- «←» key brings up the upper level of the menu;
- «→» key brings up the lower level of the menu, if there is a highlighted softkey with a right arrow;
- «Esc» key functions similar to «←» key;
- «Home» key brings up the main menu.
Note: The above keys of the keyboard allow navigation in the softkey menu only if there is no any active entry field. In this case the menu title softkey is highlighted in blue.

4.1.2 Menu Bar

The menu bar is located at the top of the screen. This menu is an auxiliary one and enables you direct access to the submenus of the main menu. Also it contains the functions of the most frequently used softkeys. You can hide the menu bar to gain more screen space for the graph area. The menu bar is controlled by the mouse.

Note: To hide the menu bar, use the following softkeys:

Display > Properties > Menu Bar
4.1.3 Instrument Status Bar

The instrument status bar is located at the bottom of the screen.

Table 4.1 Messages in the instrument status bar

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Message</th>
<th>Instrument Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP status</td>
<td>Not Ready</td>
<td>No communication between DSP and computer.</td>
</tr>
<tr>
<td></td>
<td>Loading</td>
<td>DSP program is loading.</td>
</tr>
<tr>
<td></td>
<td>Ready</td>
<td>DSP is running normally.</td>
</tr>
<tr>
<td>Sweep status</td>
<td>Meas</td>
<td>A sweep is in progress.</td>
</tr>
<tr>
<td></td>
<td>Hold</td>
<td>A sweep is on hold.</td>
</tr>
<tr>
<td></td>
<td>Ext</td>
<td>Waiting for trigger, which is set to “External”.</td>
</tr>
<tr>
<td></td>
<td>Man</td>
<td>Waiting for trigger, which is set to “Manual”.</td>
</tr>
<tr>
<td></td>
<td>Bus</td>
<td>Waiting for trigger, which is set to “Bus”.</td>
</tr>
<tr>
<td>Calibration</td>
<td>Calibration</td>
<td>Calibration standard measurement is in progress.</td>
</tr>
<tr>
<td>RF signal</td>
<td>RF output Off</td>
<td>Stimulus signal output is turned off.</td>
</tr>
<tr>
<td>External reference frequency</td>
<td>ExtRef</td>
<td>External reference frequency input (10 MHz) is turned on.</td>
</tr>
<tr>
<td>Display update</td>
<td>Update Off</td>
<td>Display update is turned off.</td>
</tr>
<tr>
<td>System correction status</td>
<td>Sys Corr OFF</td>
<td>System correction is turned off (see section 8.4).</td>
</tr>
<tr>
<td>Factory calibration error</td>
<td>PC Error</td>
<td>ROM error of power calibration.</td>
</tr>
<tr>
<td></td>
<td>RC Error</td>
<td>ROM error of system calibration.</td>
</tr>
<tr>
<td>External power meter status</td>
<td>Power Meter: message</td>
<td>When external power meter is connected to the Analyzer via USB the following messages are displayed: connection, connection error, ready, measurement, zero setting, zero setting error</td>
</tr>
</tbody>
</table>
4.2 Channel Window Layout and Functions

The channel windows display the measurement results in the form of traces and numerical values. The screen can display up to 16 channel windows simultaneously. Each window corresponds to one logical channel. A logical channel can be represented as a separate analyzer with the following settings:

- Stimulus signal settings (frequency range, power level, sweep type);
- IF bandwidth and averaging;
- Calibration.

Physical analyzer processes the logical channels in succession.

In turn each channel window can display up to 16 traces of the measured parameters. General view of the channel window is represented in figure 4.4.

![Figure 4.4 Channel window](image-url)
4.2.1 Channel Title Bar

The channel title feature allows you to enter your comment for each channel window. You can hide the channel title bar to gain more screen space for graph area.

<table>
<thead>
<tr>
<th>Channel title bar on/off switching</th>
<th>To show/hide the channel title bar, use the following softkeys:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Display > Title Label</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channel title editing</th>
<th>You can access the channel title edit mode by using the following softkeys:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Display > Edit Title Label</td>
</tr>
<tr>
<td></td>
<td>You can also make it by mouse clicking on the title area in the channel title bar.</td>
</tr>
</tbody>
</table>
4.2.2 Trace Status Field

The trace status field displays the name and parameters of a trace. The number of lines in the field depends on the number of active traces in the channel.

Note Using the trace status field you can easily modify the trace parameters by the mouse (as described in section 4.3).

Each line contains the data on one trace of the channel:

- Trace name from «Tr1» to «Tr16». The active trace name is highlighted in inverted color;
- Measured parameter: \(S_{11}, S_{21}, S_{12}, S_{22} \), or absolute power value: \(A(n), B(n), R_1(n), R_2(n) \);
- Display format, e.g. «Log Mag»;
- Trace scale in measurement units per scale division, e.g. «10.0 dB/»;
- Reference level value, e.g. «\(\uparrow 0.00 \) dB», where «\(\uparrow \)» is the symbol of the reference level;
- Trace status is indicated as symbols in square brackets (See table 4.2).
<table>
<thead>
<tr>
<th>Status</th>
<th>Symbols</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Correction</td>
<td>RO</td>
<td>OPEN response calibration</td>
</tr>
<tr>
<td></td>
<td>RS</td>
<td>SHORT response calibration</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td>THRU response calibration</td>
</tr>
<tr>
<td></td>
<td>OP</td>
<td>One-path 2-port calibration</td>
</tr>
<tr>
<td></td>
<td>F1</td>
<td>Full 1-port calibration</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>Full 2-port and TRL calibration</td>
</tr>
<tr>
<td></td>
<td>SMC</td>
<td>Scalar mixer calibration</td>
</tr>
<tr>
<td>Other Calibrations</td>
<td>RC</td>
<td>Receiver calibration</td>
</tr>
<tr>
<td></td>
<td>PC</td>
<td>Power calibration</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>Z0</td>
<td>Port impedance conversion</td>
</tr>
<tr>
<td></td>
<td>FD</td>
<td>Fixture de-embedding</td>
</tr>
<tr>
<td></td>
<td>FE</td>
<td>Fixture embedding</td>
</tr>
<tr>
<td></td>
<td>PExt</td>
<td>Port extension</td>
</tr>
<tr>
<td>Trace Display</td>
<td>No indication</td>
<td>Data trace</td>
</tr>
<tr>
<td></td>
<td>D&M</td>
<td>Data and memory traces</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>Memory trace</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Data and memory traces – off</td>
</tr>
<tr>
<td>Math Operations</td>
<td>D+M</td>
<td>Data + Memory</td>
</tr>
<tr>
<td></td>
<td>D−M</td>
<td>Data – Memory</td>
</tr>
<tr>
<td></td>
<td>D*M</td>
<td>Data * Memory</td>
</tr>
<tr>
<td></td>
<td>D/M</td>
<td>Data / Memory</td>
</tr>
<tr>
<td>Electrical Delay</td>
<td>Del</td>
<td>Electrical delay other than zero</td>
</tr>
<tr>
<td>Smoothing</td>
<td>Smo</td>
<td>Trace smoothing</td>
</tr>
<tr>
<td>Gating</td>
<td>Gat</td>
<td>Time domain gating</td>
</tr>
<tr>
<td>Conversion</td>
<td>Zr</td>
<td>Reflection impedance</td>
</tr>
<tr>
<td></td>
<td>Zt</td>
<td>Transmission impedance</td>
</tr>
<tr>
<td></td>
<td>Yr</td>
<td>Reflection admittance</td>
</tr>
<tr>
<td></td>
<td>Yt</td>
<td>Transmission admittance</td>
</tr>
<tr>
<td></td>
<td>1/S</td>
<td>S-parameter inversion</td>
</tr>
<tr>
<td></td>
<td>Ztsh</td>
<td>Transmission-shunt impedance</td>
</tr>
<tr>
<td></td>
<td>Ytsh</td>
<td>Transmission-shunt admittance</td>
</tr>
<tr>
<td></td>
<td>Conj</td>
<td>Conjugation</td>
</tr>
</tbody>
</table>
4.2.3 Graph Area

The graph area displays the traces and numeric data.

- **Vertical graticule label** displays the vertical axis numeric data for the active trace. You can set the display of the data for all the traces or hide the vertical graticule label to gain more screen space for the trace display.

- **Horizontal graticule label** displays stimulus axis numeric data (frequency, power level or time). You can also hide the horizontal graticule label to gain more screen space for the trace display.

- **Reference level position** indicates the reference level position of the trace.

- **Markers** indicate the measured values in different points on the active trace. You can enable display of the markers for all the traces simultaneously.

- Marker functions: statistics, bandwidth, flatness, RF filter.

- **Trace number** allows trace identification when printed out in black and white.

![Graph Area Diagram](image)
- *Current stimulus position* indication appears when sweep duration exceeds 1.5 sec.

Note

Using the graticule labels, you can easily modify all the trace parameters by the mouse (as described in section 4.3).

4.2.4 Trace Layout in Channel Window

If the number of the displayed traces is more than one, you can rearrange the traces to your convenience. You can select display of all the traces in one graph (See figure 4.6) or display of each trace in its individual graphs (See figure 4.7).

![Figure 4.7 Two traces in one channel window (sample)](image-url)
4.2.5 Markers

The markers indicate the stimulus values and the measured values in selected points of the trace (See figure 4.8).

The markers are numbered from 1 to 15. The reference marker is indicated with R symbol. The active marker is indicated in the following manner: its number is highlighted in inverse color, the indicator on the trace is located above the trace, the stimulus indicator is fully colored.

Figure 4.8 Markers
4.2.6 Channel Status Bar

The channel status bar is located in the bottom part of the channel window. It contains the following elements:

- **Sweep progress** field displays a progress bar when the channel data are being updated.

- **Error correction** field displays the integrated status of error correction for S-parameter traces. The values of this field are represented in table 4.3.

- **Receiver correction** field displays the integrated status of receiver correction for absolute power measurement traces. The values of this field are represented in table 4.4.

- **Power correction** field displays the integrated status of power correction for all the traces. The values of this field are represented in table 4.5.

- **Port extension** field displays the integrated status of execution of this function for S-parameter traces. If the function is enabled for all the traces, you will see black characters on gray background. If the function is enabled just for some of the traces, you will see white characters on red background.
- **Fixture simulation** field displays the integrated status of execution of this function for S-parameter traces. Fixture simulation includes the following operations: Z_0 conversion, embedding, de-embedding. If the function is enabled for all the traces, you will see black characters on gray background. If the function is enabled just for some of the traces, you will see white characters on red background.

- **Stimulus start** field allows for display and entry of the start frequency or power, depending on the sweep type. This field can be switched to indication of stimulus center frequency, in this case the word **Start** will change to **Center**.

- **Sweep points** field allows for display and entry of the number of sweep points. The number of sweep points can be set from 2 to 100,001.

- **Sweep type** field allows for display and selection of the sweep type. The values of this field are represented in table 4.6.

- **IF bandwidth** field allows for display and setting of the IF bandwidth. The values can be set from 1 Hz to 30 kHz.

- **Power level** field allows for display and entry of the port output power. In power sweep mode the field switches to indication of CW frequency of the source.

- **Averaging status** field displays the averaging status if this function is enabled. The first number is the averaging current counter value, the second one is the averaging factor.

- **Stimulus stop** field allows for display and entry of the stop frequency or power, depending on the sweep type. This field can be switched to indication of stimulus span, in this case the word **Stop** will change to **Span**.
Table 4.3 Error correction field

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cor</td>
<td>Error correction is enabled. The stimulus settings are the same for the measurement and the calibration.</td>
<td>If the function is active for all the traces – black characters on gray background.</td>
</tr>
<tr>
<td>C?</td>
<td>Error correction is enabled. The stimulus settings are not the same for the measurement and the calibration. Interpolation is applied.</td>
<td>If the function is active only for some of the traces (other traces are not calibrated) – white characters on red background.</td>
</tr>
<tr>
<td>C!</td>
<td>Error correction is enabled. The stimulus settings are not the same for the measurement and the calibration. Extrapolation is applied.</td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td>Error correction is turned off.</td>
<td>For all the traces. White characters on red background.</td>
</tr>
<tr>
<td>---</td>
<td>No calibration data. No calibration was performed.</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.4 Receiver correction field

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>Receiver correction is enabled. The stimulus settings are the same for the measurement and the calibration.</td>
<td>If the function is active for all the traces – black characters on gray background.</td>
</tr>
<tr>
<td>RC?</td>
<td>Receiver correction is enabled. The stimulus settings are not the same for the measurement and the calibration. Interpolation is applied.</td>
<td>If the function is active only for some of the traces (other traces are not calibrated) – white characters on red background.</td>
</tr>
<tr>
<td>RC!</td>
<td>Receiver correction is enabled. The stimulus settings are not the same for the measurement and the calibration. Extrapolation is applied.</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.5 Power correction field

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>Power correction is enabled. The stimulus settings are the same for the measurement and the calibration.</td>
<td>If the function is active for all the traces – black characters on gray background.</td>
</tr>
<tr>
<td>PC?</td>
<td>Power correction is enabled. The stimulus settings are not the same for the measurement and the calibration. Interpolation is applied.</td>
<td>If the function is active only for some of the traces (other traces are not calibrated) – white characters on red background.</td>
</tr>
<tr>
<td>PC!</td>
<td>Power correction is enabled. The stimulus settings are not the same for the measurement and the calibration. Extrapolation is applied.</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.6 Sweep types

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lin</td>
<td>Linear frequency sweep.</td>
</tr>
<tr>
<td>Log</td>
<td>Logarithmic frequency sweep.</td>
</tr>
<tr>
<td>Segm</td>
<td>Segment frequency sweep.</td>
</tr>
<tr>
<td>Pow</td>
<td>Power sweep.</td>
</tr>
</tbody>
</table>
4.3 Quick Channel Setting Using Mouse

This section describes the mouse manipulations, which will enable you to set the channel parameters fast and easy. In a channel window, over the field where a channel parameter can be modified, the mouse pointer will change its form to indicate the edit mode. Apart from that in text and numerical fields the edit mode will be indicated by the «underline» symbol appearance.

| Note | The mouse manipulations described in this section will help you to perform the most frequently used settings only. All the channel functions can be accessed via the softkey menu. |

4.3.1 Active Channel Selection

You can select the active channel when two or more channel windows are open. The border line of the active window will be highlighted in light color. To activate another window, make a mouse click within its area.

4.3.2 Active Trace Selection

You can select the active trace if the active channel window contains two or more traces. The active trace name will be highlighted in inverted color. To activate a trace, make a mouse click on the required trace status line, or on the trace curve or the trace marker.

4.3.3 Measured Data Setting

To assign the measured parameters (S_{11}, S_{21}, S_{12} or S_{22}) to a trace, make a mouse click on the S-parameter name in the trace status line and select the required parameter in the drop-down menu.

4.3.4 Display Format Setting

To select the trace display format, make a mouse click on the display format name in the trace status line and select the required format in the drop-down menu.
4.3.5 Trace Scale Setting

The trace scale means the vertical scale division value, which can be set by two methods.

The first method: make a mouse click on the trace scale field in the trace status line and enter the required numerical value.

The second method: move the mouse pointer over the vertical scale until the pointer form becomes as shown in the figure. Locate the pointer in the top or bottom parts of the scale, at approximately 10% of the scale height from the top or bottom of the scale. Press left button of the mouse and holding it drag the pointer from the scale center to enlarge the scale, or to the center of the scale to reduce the scale.

4.3.6 Reference Level Setting

The value of the reference level, which is indicated on the vertical scale by «►» and «◄» symbols, can be set by two methods.

The first method: make a mouse click on the reference level field in the trace status line and enter the required numerical value.

The second method: move the mouse pointer over the vertical scale until the pointer form becomes as shown in the figure. Locate the pointer in the center part of the scale. Press left button of the mouse and holding it drag the pointer up the scale to increase the reference level value, or down the scale to reduce the value.
4.3.7 Reference Level Position

The reference level position, indicated on the vertical scale by «►» and «◄» symbols, can be set in the following way. Locate the mouse pointer on a reference level symbol until it becomes as shown in the figure. Then drag and drop the reference level symbol to the desired position.

4.3.8 Sweep Start Setting

Move the mouse pointer over the stimulus scale until it becomes as shown in the figure. Locate the mouse pointer in the left part of the scale, at approximately 10% of the scale length from the left. Press left button of the mouse and holding it drag the pointer to the right to increase the sweep start value, or to the left to reduce the value.

4.3.9 Sweep Stop Setting

Move the mouse pointer over the stimulus scale until it becomes as shown in the figure. Locate the mouse pointer in the right part of the scale, at approximately 10% of the scale length from the right. Press left button of the mouse and holding it drag the pointer to the right to increase the sweep stop value, or to the left to reduce the value.

4.3.10 Sweep Center Setting

Move the mouse pointer over the stimulus scale until it becomes as shown in the figure. Locate the mouse pointer in the center part of the scale. Press left button of the mouse and holding it drag the pointer to the right to increase the sweep center value, or to the left to reduce the value.
4.3.11 Sweep Span Setting

Move the mouse pointer over the stimulus scale until it becomes as shown in the figure. Locate the mouse pointer in the center part of the scale, at approximately 20% of the scale length from the right. Press left button of the mouse and holding it drag the pointer to the right to increase the sweep span value, or to the left to reduce the value.

4.3.12 Marker Stimulus Value Setting

The marker stimulus value can be set by drag operation or by entering the value using numerical keys of the keyboard.

To drag the marker, first move the mouse pointer on one of the marker indicators until it becomes as shown in the figures.

To enter the numerical value of the stimulus, first activate its field in the marker data line by a mouse click.

4.3.13 Switching between Start/Center and Stop/Span Modes

To switch between the modes Start/Center and Stop/Span, make a mouse click in the respective field of the channel status bar. Label Start will be changed with Center, and label Stop will be changed with Span. The layout of the stimulus scale will be changed correspondingly.

4.3.14 Start/Center Value Setting

To enter the Start/Center values, activate the respective field in the channel status bar by a mouse click on the numerical value.

4.3.15 Stop/Span Value Setting

To enter the Stop/Span values, activate the respective field in the channel status bar by a mouse click on the numerical value.

4.3.16 Sweep Points Number Setting

To enter the number of sweep points, activate the respective field in the channel status bar by a mouse click on the numerical value.
4.3.17 Sweep Type Setting

To set the sweep type, click on the respective field in the channel status bar and select the required type in the drop-down menu.

4.3.18 IF Bandwidth Setting

IF bandwidth can be set by selection in the drop-down menu or by entering the value using numerical keys of the keyboard.

To activate the drop-down menu, make a right mouse click on the IF bandwidth field in the channel status bar.

4.3.19 Power Level / CW Frequency Setting

To enter the Power Level/CW Frequency, activate the respective field in the channel status bar by a mouse click on the numerical value. The parameter displayed in the field depends on the current sweep type: in frequency sweep mode you can enter power level value, in power sweep mode you can enter CW frequency value.
4.4 Channel and Trace Display Setting

The Analyzer supports 16 channels, which allow measurements with different stimulus parameter settings. The parameters related to a logical channel are listed in table 4.7.

4.4.1 Channel Window Allocating

A channel is represented on the screen as an individual channel window. The screen can display from 1 to 16 channel windows simultaneously. By default one channel window opens. If you need to open two or more channel windows select one of the layouts shown below.

To set the channel window layout, use the following softkeys:

Display > Allocate Channels

Then select the required number and layout of the channel windows in the menu.

The available options of number and layout of the channel windows on the screen are as follows:

- \(x1\)
- \(x3\)
- \(x6\)
- \(x9\)
- \(x2\)
- \(x3\)
- \(x6\)
- \(x12\)
- \(x2\)
- \(x3\)
- \(x6\)
- \(x12\)
- \(x3\)
- \(x4\)
- \(x8\)
- \(x16\)
- \(x4\)
- \(x8\)
- \(x16\)
- \(x8\)
- \(x16\)

In accordance with the layouts, the channel windows do not overlap each other. The channels open starting from the smaller numbers.

Note

For each open channel window, you should set the stimulus parameters, make other settings, and perform calibration.

Before you start a channel parameter setting or calibration, you need to select this channel as active.

The measurements are executed for open channel windows in succession. Measurements for hidden channel windows are not executed.
4.4.2 Number of Traces Setting

Each channel window can contain up to 16 different traces. Each trace is assigned the measured parameter (S-parameter), display format and other parameters. The parameters related to a trace are listed in table 4.8.

The traces can be displayed in one graph, overlapping each other, or in separate graphs of a channel window. The trace settings are made in two steps: trace number setting and trace layout setting in the channel window. By default a channel window contains one trace. If you need to enable two or more traces, set the number of traces as described below.

To set the number of the traces, use the following softkeys:

Display > Num Of Traces

Then select the number of traces from the menu.

All the traces are assigned their individual names, which cannot be changed. The trace name contains its number. The trace names are as follows: **Tr1, Tr2 ... Tr16**.

Each trace is assigned some initial settings: measured parameter, format, scale, and color, which can be modified by the user.

- By default the measured parameters are set in the following succession: \(S_{11}, S_{21}, S_{12}, S_{22} \). After that the measurements repeat in cycles.
- By default the display format for all the traces is set to logarithmic magnitude (dB).
- The scale parameters by default are set as follows: division is set to 10 dB, reference level value is set to 0 dB, reference level position is in the middle of the graph.
- The trace color is determined by its number. You can change the color for all the traces with the same number.

Note

Full cycle of trace updating depends on the S-parameters measured and the calibration method. The full cycle can consist of one sweep of Port 1 or Port 2 being a source, or can include two successive sweeps, of Port 1 then of Port 2. For example, to have two traces \(S_{11} \) and \(S_{22} \) measured, two successive sweeps will be performed. Two successive sweeps are also performed during full 2-port calibration, independently of the number of the traces and S-parameters measured.
4.4.3 Trace Allocating

By default all the traces are displayed in channel window, overlapping each other. If you need to display the traces in separate graphs, set the number and layout of the graphs in the channel window as shown below.

<table>
<thead>
<tr>
<th>Display</th>
<th>Allocate Traces</th>
</tr>
</thead>
</table>

To allocate the traces in a channel window, use the following softkeys:

Display > Allocate Traces

Then select the required number and layout of the separate trace graphs in the menu.

The available options of number and layout of the trace graphs of one channel window are as shown in section 4.4.1.

Compared to channel windows, number and layout of the trace graphs are not correlated. Number of traces and number of graphs are set independently.

- If the number of traces and the number of graphs are equal, all the traces will be displayed separately, each in its individual graph.

- If the number of traces is greater than the number of graphs, traces will be assigned successively (beginning from the smallest trace number) to the available graphs. When all the graphs become occupied, the process will continue from the first graph (the following in succession traces will be added in the graphs).

- If the number of traces is smaller than the number of graphs, empty graphs will be displayed.

If two or more traces are displayed in one graph, the vertical scale will be shown for the active trace.

Note

The Analyzer offers feature of showing the vertical graticule label for all the traces in the graph. By default this feature is set to off. For details see section 8.6.

If two or more traces are displayed in one graph, the markers' data will be shown for the active trace.
| **Note** | To display the marker data for all the traces simultaneously, there are two options: use marker table feature (See section 6.1.6.2) or deactivate identification of the active trace marker only, which is set by default (See section 6.1.6.4). |

Stimulus axis is the same for all the traces of the channel, except for the conditions when time domain transformation is applied to some of the traces. In this case the displayed stimulus axis will refer to the active trace.
<table>
<thead>
<tr>
<th>Table 4.7 Channel parameters</th>
<th>Parameter Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sweep Type</td>
</tr>
<tr>
<td>2</td>
<td>Sweep Range</td>
</tr>
<tr>
<td>3</td>
<td>Number of Sweep Points</td>
</tr>
<tr>
<td>4</td>
<td>Stimulus Power Level</td>
</tr>
<tr>
<td>5</td>
<td>Power Slope Feature</td>
</tr>
<tr>
<td>6</td>
<td>CW Frequency</td>
</tr>
<tr>
<td>7</td>
<td>Segment Sweep Table</td>
</tr>
<tr>
<td>8</td>
<td>Trigger Mode</td>
</tr>
<tr>
<td>9</td>
<td>IF Bandwidth</td>
</tr>
<tr>
<td>10</td>
<td>Averaging</td>
</tr>
<tr>
<td>11</td>
<td>Calibration</td>
</tr>
<tr>
<td>12</td>
<td>Fixture Simulator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4.8 Trace parameters</th>
<th>Parameter Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Measured Parameter (S–parameter)</td>
</tr>
<tr>
<td>2</td>
<td>Display Format</td>
</tr>
<tr>
<td>3</td>
<td>Reference Level Scale, Value and Position</td>
</tr>
<tr>
<td>4</td>
<td>Electrical Delay, Phase Offset</td>
</tr>
<tr>
<td>5</td>
<td>Memory Trace, Math Operation</td>
</tr>
<tr>
<td>6</td>
<td>Smoothing</td>
</tr>
<tr>
<td>7</td>
<td>Markers</td>
</tr>
<tr>
<td>8</td>
<td>Time Domain</td>
</tr>
<tr>
<td>9</td>
<td>Parameter Transformation</td>
</tr>
<tr>
<td>10</td>
<td>Limit Test</td>
</tr>
</tbody>
</table>
4.4.4 Trace/Channel Activating

The control commands selected by the user are applied to the active channel or the
active trace, respectively.

The border line of the active channel window is highlighted in light color. The active
trace belongs to the active channel and its title is highlighted in inverse color.

Before you set a channel or trace parameters, first you need to activate the channel or
trace, respectively.

To activate a trace/channel, use the following softkeys:

Display > Active Trace/Channel

Then activate the trace by entering the number in the **Active Trace** softkey or using **Previous Trace** or **Next Trace** softkeys.

Active channel can be selected in similar way.

4.4.5 Active Trace/Channel Window Maximizing

When there are several channel windows displayed, you can temporarily maximize the
active channel window to full screen size. The other channel windows will be hidden,
but this will not interrupt the measurements in those channels.

Similarly, when there are several traces displayed in a channel window, you can
temporarily maximize the active trace. The other traces will be hidden, but this will not
interrupt the measurements of those traces.
4.5 Stimulus Setting

The stimulus parameters are set for each channel. Before you set the stimulus parameters of a channel, make this channel active.

Note To make the measurement more accurate, perform measurements with the same stimulus settings as were used for the calibration.

4.5.1 Sweep Type Setting

To set the sweep type, use the following softkeys:

Stimulus > Sweep Type

Then select the sweep type:

- **Lin Freq**: Linear frequency sweep
- **Log Freq**: Logarithmic frequency sweep
- **Segment**: Segment frequency sweep
- **Power Sweep**: Power sweep
4.5.2 Sweep Span Setting

The sweep range should be set for linear and logarithmic frequency sweeps (Hz) and for linear power sweep (dBm). The sweep range can be set as Start / Stop or Center / Span values of the range.

To enter the start and stop values of the sweep range, use the following softkeys:

Stimulus > Start | Stop

To enter center and span values of the sweep range, use the following softkeys:

Stimulus > Center | Span

Note

If the power sweep is activated, the values on the Start, Stop, Center, and Span softkeys will be represented in dBm.

4.5.3 Sweep Points Setting

The number of sweep points should be set for linear and logarithmic frequency sweeps, and for linear power sweep.

To enter the number of sweep points, use the following softkeys:

Stimulus > Points

4.5.4 Stimulus Power Setting

The stimulus power level should be set for linear and logarithmic frequency sweeps. For the segment sweep type, the method of power level setting described in this section can be used only if the same power level is set for all the segments of the sweep. For setting of individual power level for each segment see section 4.5.8.
To enter the power level value, use the following softkeys:

Stimulus > Power > Power

4.5.5 Power Slope Feature

The power slope feature allows for compensation of power attenuation with the frequency increase, in the fixture wire. The power slope can be set for linear, logarithmic and segment frequency sweeps.

To enter the power slope value, use the following softkeys:

Stimulus > Power > Slope (dB/GHz)

To enable/disable the power slope function, use the following softkeys:

Stimulus > Power > Slope (On/Off)

4.5.6 CW Frequency Setting

CW frequency setting determines the source frequency for the linear power sweep.

To enter the CW frequency value, use the following softkeys:

Stimulus > Power > CW Freq

4.5.7 RF Out Function

RF Out function allows temporary disabling of stimulus signal. While the stimulus is disabled the measurements cannot be performed.

To disable/enable stimulus, use the following softkeys:

Stimulus > Power > RF Out
Note

RF Out function is applied to the whole Analyzer, not to some channels. The indication about it will appear in the instrument status bar (See section 4.1.3).

4.5.8 Segment Table Editing

Segment table determines the sweep rule when segment sweep is activated.

To open the segment table, use the following softkeys:

Stimulus > Segment Table

When you switch to the **Segment Table** submenu, the segment table will open in the lower part of the screen. When you exit the **Segment Table** submenu, the segment table will become hidden.

The segment table layout is shown below. The table has three mandatory columns: frequency range and number of sweep points, and three columns, which you can enable/disable: IF bandwidth, power level and delay time.

<table>
<thead>
<tr>
<th>Start</th>
<th>Stop</th>
<th>Points</th>
<th>IF BW</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 300 kHz</td>
<td>300MHz</td>
<td>11</td>
<td>100 Hz</td>
<td>10 dBm</td>
</tr>
<tr>
<td>2 800MHz</td>
<td>1.12 GHz</td>
<td>11</td>
<td>3 kHz</td>
<td>0 dBm</td>
</tr>
<tr>
<td>3 1.12 GHz</td>
<td>1.99 GHz</td>
<td>11</td>
<td>3 kHz</td>
<td>0 dBm</td>
</tr>
<tr>
<td>4 1.99 GHz</td>
<td>2.2 GHz</td>
<td>11</td>
<td>100 Hz</td>
<td>10 dBm</td>
</tr>
<tr>
<td>5 2.2 GHz</td>
<td>3.2 GHz</td>
<td>11</td>
<td>100 Hz</td>
<td>10 dBm</td>
</tr>
</tbody>
</table>

Each row describes one segment. The table can contain one or more rows, up to 20,001 (the total number of sweep points of all the segments).

To add a segment to the table, click **Add** softkey. The new segment row will be entered below the highlighted one.

To delete a segment, click **Delete** softkey. The highlighted segment will be deleted.

For any segment it is necessary to set the mandatory parameters: frequency range and number of sweep points. The frequency range can be set either as Start / Stop, or as Center / Span.
To set the frequency range representation mode, click **Freq Mode** softkey to select between **Start/Stop** and **Center/Span** options.

For any segment you can enable the additional parameter columns: IF bandwidth, power level, and delay time. If such a column is disabled, the corresponding value set for linear sweep will be used (same for all the segments).

To enable the IF bandwidth column, click **List IFBW** softkey.

To enable the power level column, click **List Power** softkey.

To enable the delay time column, click **List Delay** softkey.

To set a parameter, make a mouse click on its value field and enter the value. To navigate in the table you can use the keys of the keyboard.

Note
The adjacent segments do not overlap in the frequency domain.

The segment table can be saved into *.lim file to a hard disk and later recalled.

To save the segment table, click **Save**... softkey.

Then enter the file name in the appeared dialog.

To recall the segment table, click **Recall**... softkey.

Then select the file name in the appeared dialog.

Segment sweep graph has two methods of frequency axis representation. The axis can display the frequencies of the measurement points. For some cases it can be helpful to have the frequency axis displayed in sequential numbers of the measurement points.
To set the frequency axis display mode, click Segment Display softkey and select Freq Order or Base Order option.

4.5.9 Measurement Delay

Measurement delay function allows to add additional time interval at each measurement point between the moment when the source output frequency becomes stable and the moment of measurement start. This capability can be useful for measurements in narrowband circuits with transient period longer than the measurement in one point.

To set the time of measurement delay, use the following softkeys:

Stimulus > Meas Delay
4.6 Trigger Setting

The trigger mode determines the sweep actuation of the channel at a trigger signal detection. A channel can operate in one of the following three trigger modes:

- Continuous – a sweep actuation occurs every time a trigger signal is detected;
- Single – one sweep actuation occurs at one trigger signal detection after the mode has been enabled, after the sweep is complete the channel turns to hold mode;
- Hold – sweep actuation is off in the channel, the trigger signals do not affect the channel.

The trigger signal influences the whole Analyzer and controls the trigging of all the channels in the following manner. If more than one channel windows are open, the trigger activates the successive measurement of all the channels, which are not in hold mode. Before the measurement of all the channels is complete, all the new triggers will be ignored. When the measurement of all the channels is complete, if there is as least one channel in continuous trigger mode, the Analyzer will turn to waiting for a trigger state.

The trigger source can be selected by the user from the following four available options:

- Internal – the next trigger signal is generated by the Analyzer on completion of each sweep;
- External – the external trigger input is used as a trigger signal source;
- Manual – the trigger signal is generated by pressing the corresponding softkey.
- Bus – the trigger signal is generated by a command communicated from an external computer from a program controlling the Analyzer via COM/DCOM.
To set the trigger mode, use the following softkeys:

Stimulus > Trigger

Then select the required trigger mode:

- Hold
- Single
- Continuous

Hold All Channels and **Continuous All Channels** softkeys turn all the channels to the respective mode.

Restart softkey aborts the sweep and returns the trigger system to the waiting for a trigger state.

Trigger softkey generates the trigger in manual trigger mode.

To set the trigger source, use the following softkeys:

Stimulus > Trigger > Trigger Source

Then select the required trigger source:

- Internal
- External
- Manual
- Bus
4.7 Measurement Parameters Setting

4.7.1 S-Parameters

For high-frequency network analysis the following terms are applied: incident, reflected and transmitted waves, transferred in the circuits of the setup (See figure 4.10).

Measurements of magnitude and phase of incident, reflected and transmitted signals allow to determine the S-parameters (scattered parameters) of the DUT. An S-parameter is a relation between the complex magnitudes of the two waves:

\[
S_{mn} = \frac{\text{transmitted wave at Port } m}{\text{incident wave at Port } n}
\]

The Analyzer allows measurement of the full scattering matrix of a 2-port DUT:

\[
S = \begin{bmatrix}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{bmatrix}
\]

To measure the full scattering matrix, you do not need to change the connection of the DUT to the Analyzer.

For the measurement of \(S_{11}, S_{21}\) parameters, test Port 1 will operate as a signal source. The incident and reflected waves will be measured by Port 1. The transmitted wave will be measured by Port 2.

For the measurement of \(S_{12}, S_{22}\) parameters, test Port 2 will operate as a signal source. The incident and reflected waves will be measured by Port 2. The transmitted wave will be measured by Port 1.
4.7.2 S-Parameter Setting

A measured parameter (S11, S21, S12, S22) is set for each trace. Before you select the measured parameter, first activate the trace.

To set the measured parameter, use the following softkey:

Measurement

Then select the required parameter by the corresponding softkey.

4.7.3 Absolute Measurements

The absolute measurement is the measurement of absolute power of a signal at a receiver input. Unlike relative measurements of S-parameters, which represent a relation between the signals at inputs of two receivers, absolute measurements determine the signal power at input of one receiver. A 2-port Analyzer has four independent receivers: A, B, R1, R2 (See figure 4.11).

Figure 4.11 Analyzer block diagram
R1 and R2 are the receivers of a reference signal, A and B are the receivers of a test signal. A and R1 receivers are located in port 1, B and R2 receivers are located in port 2. There are six types of absolute measurements depending on the port number (See table 4.10):

Table 4.10 Absolute measurements

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(1)</td>
<td>Test signal receiver A (Source Port 1)</td>
</tr>
<tr>
<td>A(2)</td>
<td>Test signal receiver A (Source Port 2)</td>
</tr>
<tr>
<td>B(1)</td>
<td>Test signal receiver B (Source Port 1)</td>
</tr>
<tr>
<td>B(2)</td>
<td>Test signal receiver B (Source Port 2)</td>
</tr>
<tr>
<td>R1(1)</td>
<td>Reference signal receiver R1 (Source Port 1)</td>
</tr>
<tr>
<td>R2(2)</td>
<td>Reference signal receiver R2 (Source Port 2)</td>
</tr>
</tbody>
</table>

4.7.4 Absolute Measurement Setting

To select absolute measurement, click softkeys:

Measurement > Absolute >

- Receiver A, Source Port 1 |
- Receiver B, Source Port 1 |
- Receiver R1, Source Port 1 |
- Receiver A, Source Port 2 |
- Receiver B, Source Port 2 |
- Receiver R2, Source Port 2 |

Note

In absolute measurement mode, dBm measurement units will be used for logarithmic magnitude format, W measurement units will be used for measurements in linear magnitude format. Other formats are not applied to absolute measurements as power is measured in scalar values.
4.8 Format Setting

The Analyzer offers the display of the measured S-parameters on the screen in three formats:

- rectangular format;
- polar format;
- Smith chart format.

4.8.1 Rectangular Formats

In this format, stimulus values are plotted along X-axis and the measured data are plotted along Y-axis (See figure 4.12).

![Figure 4.12 Rectangular format](image)

To display S-parameter complex value along Y-axis, it should be transformed into a real number. Rectangular formats involve various types of transformation of an S-parameter $S = a + j \cdot b$, where:

- a – real part of S-parameter complex value;
- b – imaginary part of S-parameter complex value.

There are eight types of rectangular formats depending on the measured value plotted along Y-axis (See table 4.11).
<table>
<thead>
<tr>
<th>Format Type Description</th>
<th>Label</th>
<th>Data Type (Y-axis)</th>
<th>Measurement Unit (Y-axis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logarithmic Magnitude</td>
<td>Log Mag</td>
<td>S-parameter logarithmic magnitude: (20 \cdot \log</td>
<td>S</td>
</tr>
<tr>
<td>Voltage Standing Wave Ratio</td>
<td>SWR</td>
<td>(\frac{1 +</td>
<td>S</td>
</tr>
<tr>
<td>Phase</td>
<td>Phase</td>
<td>S-parameter phase from (-180^\circ) to (+180^\circ): (\frac{180^\circ}{\pi} \cdot \tan^{-1} \frac{a}{b})</td>
<td>Degree (°)</td>
</tr>
<tr>
<td>Expanded Phase</td>
<td>Expand Phase</td>
<td>S-parameter phase, measurement range expanded to from below (-180^\circ) to over (+180^\circ)</td>
<td>Degree (°)</td>
</tr>
<tr>
<td>Group Delay</td>
<td>Group Delay</td>
<td>Signal propagation delay within the DUT: (\frac{d\varphi}{d\omega}), (\varphi = \tan^{-1} \frac{a}{b}), (\omega = 2\pi \cdot f)</td>
<td>Second (sec.)</td>
</tr>
<tr>
<td>Linear Magnitude</td>
<td>Lin Mag</td>
<td>S-parameter linear magnitude: (\sqrt{a^2 + b^2})</td>
<td>Abstract number</td>
</tr>
<tr>
<td>Real Part</td>
<td>Real</td>
<td>S-parameter real part: (a = \text{re}(S))</td>
<td>Abstract number</td>
</tr>
<tr>
<td>Imaginary Part</td>
<td>Imag</td>
<td>S-parameter imaginary part: (b = \text{im}(S))</td>
<td>Abstract number</td>
</tr>
</tbody>
</table>
4.8.2 Polar Format

Polar format represents the measurement results on the pie chart (See figure 4.13). The distance to a measured point from the graph center corresponds to the magnitude of its value. The counterclockwise angle from the positive horizontal axis corresponds to the phase of the measured value.

![Figure 4.13 Polar format](image)

The polar graph does not have a frequency axis, so frequency will be indicated by the markers. There are three types of polar formats depending on the data displayed by the marker. The traces will remain the same on all the graphs.

Table 4.12 Polar formats

<table>
<thead>
<tr>
<th>Format Type Description</th>
<th>Label</th>
<th>Data Displayed by Marker</th>
<th>Measurement Unit (Y-axis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Magnitude and Phase</td>
<td>Polar (Lin)</td>
<td>S-parameter linear magnitude</td>
<td>Abstract number</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-parameter phase</td>
<td>Degree (°)</td>
</tr>
<tr>
<td>Logarithmic Magnitude and Phase</td>
<td>Polar (Log)</td>
<td>S-parameter logarithmic magnitude</td>
<td>Decibel (dB)</td>
</tr>
<tr>
<td>Real and Imaginary Parts</td>
<td>Polar (Re/Im)</td>
<td>S-parameter real part</td>
<td>Abstract number</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-parameter imaginary part</td>
<td>Abstract number</td>
</tr>
</tbody>
</table>
4.8.3 Smith Chart Format

Smith chart format is used for representation of impedance values for DUT reflection measurements. In this format, the trace has the same points as in polar format.

![Smith chart format](image)

Figure 4.14 Smith chart format

The polar graph does not have a frequency axis, so frequency will be indicated by the markers. There are five types of Smith chart formats depending on the data displayed by the marker. The traces will remain the same on all the graphs.

<table>
<thead>
<tr>
<th>Format Type Description</th>
<th>Label</th>
<th>Data Displayed by Marker</th>
<th>Measurement Unit (Y-axis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Magnitude and Phase</td>
<td>Smith (Lin)</td>
<td>S-parameter linear magnitude</td>
<td>Abstract number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-parameter phase</td>
<td>Degree (°)</td>
</tr>
<tr>
<td>Logarithmic Magnitude and Phase</td>
<td>Smith (Log)</td>
<td>S-parameter logarithmic magnitude</td>
<td>Decibel (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-parameter phase</td>
<td>Degree (°)</td>
</tr>
<tr>
<td>Real and Imaginary Parts</td>
<td>Smith (Re/Im)</td>
<td>S-parameter real part</td>
<td>Abstract number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-parameter imaginary part</td>
<td>Abstract number</td>
</tr>
</tbody>
</table>
Z₀ – test port impedance. Z₀ setting is described in section 5.2.12.
4.8.4 Data Format Setting

You can select the format for each trace of the channel individually. Before you set the format, first activate the trace.

To set the rectangular format, use the following softkey:

Format

Then select the required format:

- Logarithmic magnitude
- SWR
- Phase
- Expanded phase
- Group delay
- Linear magnitude
- Real part
- Imaginary part
To set the Smith chart format, use the following softkeys:

Format > Smith

Then select the required format:

- Logarithmic magnitude and phase
- Linear magnitude and phase
- Real and imaginary parts
- Complex impedance (at input)
- Complex admittance (at input)

To set the Smith chart format, use the following softkeys:

Format > Polar

Then select the required format:

- Logarithmic magnitude and phase
- Linear magnitude and phase
- Real and imaginary parts
4.9 Scale Setting

4.9.1 Rectangular Scale

For rectangular format you can set the following parameters (See figure 4.15):

- Scale division;
- Reference level value;
- Reference level position;
- Number of scale divisions.

![Figure 4.15 Rectangular scale](image)

4.9.2 Rectangular Scale Setting

You can set the scale for each trace of a channel. Before you set the scale, first activate the trace.

To set the scale of a trace, use the following softkeys:

Scale > Scale

To set the reference level, use the following softkeys:

Scale > Ref Value

To set the position of the reference level, use the following softkeys:

Scale > Ref Position
4.9.3 Circular Scale

For polar and Smith chart formats, you can set the outer circle value (See figure 4.16).

![Circular scale diagram]

Figure 4.16 Circular scale

4.9.4 Circular Scale Setting

To set the scale of the circular graphs, use the following softkeys:

Scale > Scale

4.9.5 Automatic Scaling

The automatic scaling function automatically allows the user to define the trace scale so that the trace of the measured value could fit into the graph entirely.

In rectangular format, two parameters are adjustable: scale division and reference level position. In circular format, the outer circle value will be adjusted.

1 Number of scale divisions affects all the graphs of the channel.
4.9.6 Reference Level Automatic Selection

This function executes automatic selection of the reference level in rectangular coordinates.
After the function has been executed, the trace of the measured value makes the vertical shift so that the reference level crosses the graph in the middle. The scale division will remain the same.

To execute the automatic selection of the reference level, use the following softkeys:

Scale > Auto Ref Value

4.9.7 Electrical Delay Setting

The electrical delay function allows the user to define the compensation value for the electrical delay of a device. This value is used as compensation for the electrical delay during non-linear phase measurements. The electrical delay is set in seconds.

If the electrical delay setting is other than zero, S-parameter value will vary in accordance with the following formula:

\[S = S \cdot e^{j2\pi f \cdot t}, \]

where

- \(f \) – frequency, Hz,
- \(t \) – electrical delay, sec.

The electrical delay is set for each trace individually. Before you set the electrical delay, first activate the trace.

To set the electrical delay, use the following softkeys:

Scale > Electrical Delay
4.9.8 Phase Offset Setting

The phase offset function allows the user to define the constant phase offset of a trace. The value of the phase offset is set in degrees for each trace individually. Before you set the phase offset, first activate the trace.

To set the phase offset, use the following softkeys:

Scale > Phase Offset
4.10 Measurement Optimizing

You can set IF bandwidth, averaging and smoothing parameters in Average softkey submenu.

4.10.1 IF Bandwidth Setting

The IF bandwidth function allows the user to define the bandwidth of the test receiver. The IF bandwidth runs through the following sequence of numbers: 1, 1.5, 2, 3, 5, 7 within the range of 1 Hz to 30 kHz.

The IF bandwidth narrowing allows to reduce self-noise and widen the dynamic range of the Analyzer. Also the sweep time will increase. Narrowing of the IF bandwidth by 10 will reduce the receiver noise by 10 dB.

The IF bandwidth should be set for each channel individually. Before you set the IF bandwidth, first activate the channel.

To set the IF bandwidth, use the following softkeys:

Average > IF Bandwidth

4.10.2 Averaging Setting

The averaging is performed in a measurement point is made over several previous sweeps. The averaging function is similar to IF bandwidth narrowing. It allows you to reduce self-noise and widen the dynamic measurement range of the Analyzer.

The averaging in each measurement point is made over several sweeps in accordance with the following equation:

\[
M_i = \begin{cases}
S_i, & i = 0 \\
(1 - \frac{1}{n}) \cdot M_{i-1} + \frac{S_i}{n}, & i > 0, \quad n = \min(i+1, N)
\end{cases}
\]

\(M_i\) – i-sweep averaging result;
\(S_i\) – i-sweep measurement parameter (S-parameter) value;
\(N\) – averaging factor is set by the user from 1 to 999; the higher the factor value the stronger the averaging effect.
When the averaging function is enabled, the current number of iterations and the averaging factor, e.g. «9/10», will appear in the channel status bar. The averaging process is considered stable when the both numbers have become equal.

The averaging should be set for each channel individually. Before you set the averaging, first activate the channel.

To toggle the averaging function on/off, use the following softkeys:

- **Average** > **Averaging**

To set the averaging factor, use the following softkeys:

- **Averaging** > **Avg Factor**

4.10.3 Smoothing Setting

The smoothing of the sweep results is made by averaging of adjacent points of the trace determined by the moving aperture. The aperture is set by the user in percent against the total number of the trace points.

The smoothing does not increase dynamic range of the Analyzer. It does not affect the average level of the trace, but it reduces the noise bursts.

The smoothing should be set for each trace individually. Before you set the smoothing, first activate the trace.

To toggle the smoothing function on/off, use the following softkeys:

- **Averaging** > **Smoothing**

To set the smoothing aperture, use the following softkeys:

- **Averaging** > **Smo Aperture**
4.11 Mixer Measurements

4.11.1 Mixer Measurement Methods

The Analyzer allows you to perform measurements of mixers and other frequency translating devices using scalar and vector methods.

The **scalar method** allows measurement of scalar transmission S-parameters of the frequency translating devices. Phase and group delay measurements are not accessible in this mode. Simple measurement setup (without any additional equipment) is the advantage of this method (See figure 4.17).

![Figure 4.17 Scalar mixer measurement setup](image)

The scalar measurement method is based on *frequency offset* mode. The frequency offset mode produces frequency offset between the Analyzer test ports and described in detail in section 4.11.2. The frequency offset mode can be combined with different calibration methods.

When measuring the mixers by scalar method the most accurate method of calibration is *scalar mixer calibration* (See section 5.6).

An easier but less accurate method is to use the absolute measurements in combination with receiver calibration and power calibration (See sections 4.7.3, 5.5 and section 5.4). This method often features ripple of transmission S-parameters of the mixer due to the mixer input and output mismatch. Partially this can be compensated by matching attenuators at input and output of the 3-10 dB mixer.

The **vector method** allows measurement of mixer transmission complex S-parameter including phase and group delay. The method requires additional equipment (See figure 4.18): an external mixer with filter, which is called *calibration mixer*, and a LO common for both the calibration mixer and the mixer under test.
The vector mixer measurement method ensures same frequency at the both test ports of the Analyzer, in normal operation mode. In this case, the only applicable calibration method is vector mixer calibration (See section 5.7).

4.11.2 Frequency Offset Mode

The frequency offset mode enables you to measure transmission S-parameters of the frequency translating devices. In this section, we refer to the frequency translating devices such frequency shifting devices as mixers and converters, as well as devices dividing or multiplying frequency.

This measurement mode is based on frequency offset of receiver port frequency relative to source port frequency. The frequency offset is defined for each port using three coefficients: multiplier, divider, and offset. These coefficients allow for calculation of a port frequency relative to the basic frequency range.

\[
F_{port} = \frac{M}{D} F_{base} + F_{ofs}
\]

- \(M\) – multiplier,
- \(D\) – divider,
- \(F_{ofs}\) – offset,
- \(F_{base}\) – basic frequency.
In majority of cases it is sufficient to apply offset to one of the ports, leaving the other one at the basic frequency \((M=1, D=1, F_{ofs}=0)\).

Below are some examples of offset coefficient calculation at different types of frequency conversion. Mixer input is connected to port 1, mixer output is connected to port 2. RF – output frequency, IF – intermediate frequency, LO – local oscillator frequency. Second port of the Analyzer is running in frequency offset mode:

1. IF = RF – LO
 Port 2: \(M = 1, D = 1, F_{ofs} = -LO\).

2. IF = LO – RF
 Port 2: \(M = -1, D = 1, F_{ofs} = LO\).

3. IF = RF + LO
 Port 2: \(M = 1, D = 1, F_{ofs} = LO\).

In frequency offset mode, the bottom part of the channel window will indicate each port frequency span (See figure 4.19).

![Channel window in frequency offset mode](image_url)
4.11.3 Automatic Adjustment of Offset Frequency

When you perform mixer measurements in frequency offset mode, you need to set the offset frequency equal to LO frequency. The accuracy of the offset frequency setting must be no less than IF filter bandwidth, otherwise, the receiver will not get the output signal from the mixer. In practice, there is always some LO frequency setting error (unknown to the user) when the tested mixer has an internal LO.

The Analyzer offers the automatic adjustment function of the offset frequency. This function enables you to accurately set the offset frequency equal to the frequency of the internal LO of the DUT.

Automatic adjustment function of the offset frequency can be activated only for one port. The value of the offset frequency automatic adjustment will be indicated in the line of the respective port in the channel window (See figure 4.20).

The automatic adjustment can be made within ±500 kHz range from the offset frequency set by the user. The function can be enabled/disabled by the user. Adjustment can be performed upon key pressing, or continuously with the set time interval.
Figure 4.20 Channel window in frequency offset mode with enabled automatic adjustment function of the offset frequency

The typical error of automatic adjustment of the offset frequency depends on the current IF filter bandwidth (See table 4.14).

Table 4.14 Typical error of offset frequency automatic adjustment

<table>
<thead>
<tr>
<th>IF Filter Bandwidth</th>
<th>Typical Error of Offset Frequency Automatic Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 kHz</td>
<td>500 Hz</td>
</tr>
<tr>
<td>3 kHz</td>
<td>50 Hz</td>
</tr>
<tr>
<td>1 kHz</td>
<td>15 Hz</td>
</tr>
<tr>
<td>300 Hz</td>
<td>5 Hz</td>
</tr>
<tr>
<td>100 Hz</td>
<td>2 Hz</td>
</tr>
</tbody>
</table>

4.11.3.1 Setting of Offset Frequency Automatic Adjustment

To enable/disable automatic adjustment function of the offset frequency, click softkeys:

Stimulus > Frequency Offset > Offset Adjust > Offset Adjust
Select port by softkeys:

Stimulus > Frequency Offset > Offset Adjust > Select Port

Note: normally, it is the port with enabled frequency offset.

Enter adjustment value by softkeys:

Stimulus > Frequency Offset > Offset Adjust > Adjust Value

Note: or click Adjust Immediate, as described below.

To enable/disable continuous adjustment, click softkeys:

Stimulus > Frequency Offset > Offset Adjust > Continuous Adjust

To enter the time interval for continuous adjustment, click softkeys:

Stimulus > Frequency Offset > Offset Adjust > Adjust Period

To initiate a single adjustment, click softkeys:

Stimulus > Frequency Offset > Offset Adjust > Adjust Immediate
5 CALIBRATION AND CALIBRATION KIT

5.1 General Information

5.1.1 Measurement Errors

S-parameter measurements are influenced by various measurement errors, which can be broken down into two categories:

- systematic errors, and
- random errors.

Random errors comprise such errors as noise fluctuations and thermal drift in electronic components, changes in the mechanical dimensions of cables and connectors subject to temperature drift, repeatability of connections and cable bends. Random errors are unpredictable and hence cannot be estimated and eliminated in calibration. Random errors can be reduced by correct setting of the source power, IF bandwidth narrowing, sweep averaging, maintaining constant environment temperature, observance of the Analyzer warm-up time, careful connector handling, and avoidance of cable bending after calibration.

Random errors and related methods of correction are not mentioned further in this section.

Systematic errors are the errors caused by imperfections in the components of the measurement system. Such errors occur repeatedly and their characteristics do not change with time. Systematic errors can be determined and then reduced by performing mathematical correction of the measurement results.

The process of measurement of precision devices with predefined parameters with the purpose of determination of measurement systematic errors is called calibration, and such precision devices are called calibration standards. The most commonly used calibration standards are SHORT, OPEN, and LOAD.

The process of mathematical compensation (numerical reduction) for measurement systematic errors is called an error correction.
5.1.2 Systematic Errors

The systematic measurement errors of vector network analyzers are subdivided into the following categories according to their source:

- Directivity;
- Source match;
- Load match;
- Isolation;
- Reflection/transmission tracking.

The measurement results before the procedure of error correction has been executed are called **uncorrected**.

The residual values of the measurement results after the procedure of error correction are called **effective**.

5.1.2.1 Directivity Error

A directivity error \((Ed)\) is caused by incomplete separation of the incident signal from the reflected signal by the directional coupler in the source port. In this case part of the incident signal energy comes to the receiver of the reflected signal. Directivity errors do not depend on the characteristics of the DUT and usually have stronger effect in reflection measurements.

5.1.2.2 Source Match Error

A source match error \((Es)\) is caused by the mismatch between the source port and the input of the DUT. In this case part of the signal reflected by the DUT reflects at the source port and again comes into the input of the DUT. The error occurs both in reflection measurement and in transmission measurement. Source match errors depend on the relation between input impedance of the DUT and test port impedance when switched as a signal source.

Source match errors have strong effect in measurements of a DUT with poor input matching.

5.1.2.3 Load Match Error

A load match error \((El)\) is caused by the mismatch between the receiver port and the output of the DUT. In this case part of the signal transmitted through the DUT reflects at the receiver port and comes to the output of the DUT. The error occurs in transmission measurements and in reflection measurements (for a 2-port DUT). Load match errors depend on the relation between output impedance of the DUT and test port impedance switched as a signal receiver.
In transmission measurements the load match error has considerable influence if the output of the DUT is poorly matched.

In reflection measurements the load match error has considerable influence in case of poor output match and low attenuation between the output and input of the DUT.

5.1.2.4 Isolation Error

An isolation error (E_x) is caused by a leakage of the signal from the source port to the receiver port escaping transmission through the DUT.

The Analyzer has typical isolation ratio of -140 dB, that allows to ignore this error for most of measurements. The isolation error measurement is a non-mandatory option in all types of calibration.

5.1.2.5 Reflection Tracking Error

A reflection tracking error (E_r) is caused by the difference in frequency response between the test receiver and the reference receiver of the source port in reflection measurement.

5.1.2.6 Transmission Tracking Error

A transmission tracking error (E_t) is caused by the difference in frequency response between the test receiver of the receiver port and the reference receiver of the source port in transmission measurement.
5.1.3 Error Modeling

Error modeling and method of signal flow graphs are applied to vector network analyzers for analysis of its systematic errors.

5.1.3.1 One-Port Error Model

In reflection measurement only one port of the Analyzer is used. The signal flow graph of errors for the port 1 is represented in figure 5.1. For port 2 the signal flow graph of the errors will be similar.

[Diagram of one-port error model]

Where:

- S_{11a} – reflection coefficient true value;
- S_{11m} – reflection coefficient measured value.

The measurement result at port 1 is affected by the following three systematic error terms:

- E_{d1} – directivity;
- E_{s1} – source match;
- E_{r1} – reflection tracking.

For normalization the stimulus value is taken equal to 1. All the values used in the model are complex.

After determining all the three error terms E_{d1}, E_{s1}, E_{r1} for each measurement frequency by means of a **full 1-port calibration**, it is possible to calculate (mathematically subtract the errors from the measured value S_{11m}) the true value of the reflection coefficient S_{11a}.

There are simplified methods, which eliminate the effect of only one or two out of the three systematic errors.
5.1.3.2 Two-Port Error Model

For a two-port measurement, two signal flow graphs are considered. One of the graphs describes the case where port 1 is the stimulus source; the other graph describes the case where port 2 is the stimulus source.

The signal flow graphs of errors effect in a two-port system are represented in figure 5.2:

Where:

- S_{11a}, S_{21a}, S_{12a}, S_{22a} – true values of the DUT parameters;
- S_{11m}, S_{21m}, S_{12m}, S_{22m} – measured values of the DUT parameters.

For normalization the stimulus value is taken equal to 1. All the values used in the model are complex.

The measurement result in a two-port system is affected by twelve systematic error terms.
Table 5.1 Systematic error terms

<table>
<thead>
<tr>
<th>Description</th>
<th>Stimulus Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Port 1</td>
</tr>
<tr>
<td>Directivity</td>
<td>E_{d1}</td>
</tr>
<tr>
<td>Source match</td>
<td>E_{s1}</td>
</tr>
<tr>
<td>Reflection tracking</td>
<td>E_{r1}</td>
</tr>
<tr>
<td>Transmission tracking</td>
<td>E_{t1}</td>
</tr>
<tr>
<td>Load match</td>
<td>E_{l1}</td>
</tr>
<tr>
<td>Isolation</td>
<td>E_{x1}</td>
</tr>
</tbody>
</table>

After determination of all the twelve error terms for each measurement frequency by means of a 2-port calibration, it is possible to calculate the true value of the S-parameters: S_{11a}, S_{21a}, S_{12a}, S_{22a}.

There are simplified methods, which eliminate the effect of only one or several out of the twelve systematic error terms.

Note

If you use a 2-port calibration, to determine any of S-parameters you need to know all the four measurements S_{11m}, S_{21m}, S_{12m}, S_{22m}. That is why to update one or all of the S-parameters, you need to perform two sweeps: with port 1 as a signal source, and with port 2 as a signal source.

5.1.4 Analyzer Test Ports Defining

The test ports of the Analyzer are defined by means of calibration. The test port is a connector accepting a calibration standard in the process of calibration.

A type-N 50 Ω connector on the front panel of the Analyzer will be the test port if the calibration standards are connected directly to it.

Sometimes it is necessary to connect coaxial cable and/or adapter to the connector on the front panel for connection of the DUT with a different connector type. In such cases connect calibration standards to the connector of the cable or adapter.

Figure 5.3 represents two cases of test port defining for 2-port measurement. The use of cables and/or adapters does not affect the measurement results if they were integrated into the process of calibration.
In some cases, the term of *calibration plane* is used. Calibration plane is an imaginary plane located at the ends of the connectors, which accept calibration standards during calibration.

5.1.5 Calibration Steps

The process of calibration comprises the following steps:

- Selection of the calibration kit matching the connector type of the test port. The calibration kit includes such standards as SHORT, OPEN, and LOAD with matched impedance. Magnitude and phase responses i.e. S-parameters of the standards are well known. The characteristics of the standards are represented in the form of an **equivalent circuit model**, as described below;

- Selection of a calibration method (see section 5.1.6) is based on the required accuracy of measurements. The calibration method determines what error terms of the model (or all of them) will be compensated;

- Measurement of the standards within a specified frequency range. The number of the measurements depends on the type of calibration;

- The Analyzer compares the measured parameters of the standards against their predefined values. The difference is used for calculation of the calibration coefficients (systematic errors);

- The table of calibration coefficients is saved into the memory of the Analyzer and used for error correction of the measured results of any DUT.

Calibration is always made for a specific channel, as it depends on the channel stimulus settings, particularly on the frequency span. This means that a table of calibration coefficients is being stored each for an individual channel.
5.1.6 Calibration Methods

The Analyzer supports several methods of one-port and two-port calibrations. The calibration methods vary by quantity and type of the standards being used, by type of error correction, and accuracy. The table below represents the overview of the calibration methods.

Table 5.2 Calibration methods

<table>
<thead>
<tr>
<th>Calibration Method</th>
<th>Parameters</th>
<th>Standards</th>
<th>Errors</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflection Normalization</td>
<td>S_{11}</td>
<td>SHORT or OPEN</td>
<td>E_{d1}, E_{d1}^1</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>or S_{22}</td>
<td>or LOAD 1</td>
<td>or E_{d2}, E_{d2}^1</td>
<td></td>
</tr>
<tr>
<td>Transmission Normalization</td>
<td>S_{21}</td>
<td>THRU</td>
<td>E_{d1}, E_{d1}^2</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>or S_{12}</td>
<td>2 LOADs 2</td>
<td>or E_{d2}, E_{d2}^2</td>
<td></td>
</tr>
<tr>
<td>Full One-Port Calibration</td>
<td>S_{11}</td>
<td>SHORT</td>
<td>E_{d1}, E_{d1}, E_{d1}</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>or S_{22}</td>
<td>or OPEN</td>
<td>or E_{d2}, E_{d2}, E_{d1}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One-Path Two-Port Calibration</td>
<td>S_{11}, S_{21}</td>
<td>SHORT</td>
<td>$E_{d1}, E_{d1}, E_{d1}, E_{d1}, E_{d1}^2$</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>or S_{12}, S_{22}</td>
<td>or OPEN</td>
<td>or $E_{d1}, E_{d1}, E_{d1}, E_{d1}, E_{d1}^2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>THRU</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 LOADs 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Two-Port Calibration</td>
<td>S_{11}, S_{21}</td>
<td>SHORT</td>
<td>$E_{d1}, E_{d1}, E_{d1}, E_{d1}, E_{d1}, E_{d1}^2$</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>S_{12}, S_{22}</td>
<td>or OPEN</td>
<td>or $E_{d2}, E_{d2}, E_{d2}, E_{d2}, E_{d2}, E_{d2}^2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>THRU</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 LOADs 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRL Calibration</td>
<td>S_{11}, S_{21}</td>
<td>THRU or LINE</td>
<td>$E_{d1}, E_{d1}, E_{d1}, E_{d1}, E_{d1}$</td>
<td>Very</td>
</tr>
<tr>
<td></td>
<td>S_{12}, S_{22}</td>
<td>or Reflect</td>
<td>or $E_{d2}, E_{d2}, E_{d2}, E_{d2}, E_{d2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LINE or 2 LOADs</td>
<td></td>
<td>High</td>
</tr>
</tbody>
</table>

1 If optional directivity calibration is performed.

2 If optional isolation calibration is performed.
5.1.6.1 Normalization

Normalization is the simplest method of calibration as it involves measurement of only one calibration standard for each S-parameter.

- 1-port (reflection) S-parameters (S_{11}, S_{22}) are calibrated by means of a SHORT or an OPEN standard, estimating reflection tracking error term E_r.
- 2-port (transmission) S-parameters (S_{21}, S_{12}) are calibrated by means of a THRU standard, estimating transmission tracking error term E_t.

This method is called normalization because the measured S-parameter at each frequency point is divided (normalized) by the corresponding S-parameter of the calibration standard.

Normalization eliminates frequency-dependent attenuation and phase offset in the measurement circuit, but does not compensate for errors of directivity, mismatch or isolation. This constrains the accuracy of the method.

Note: Normalization can also be referred to as response open, response short or response thru calibration depending on the standard being used: an OPEN, SHORT or THRU respectively.

5.1.6.2 Directivity Calibration (Optional)

The Analyzer offers optional directivity (Ed) calibration feature, which can be used in combination with reflection normalization by means of additional measurement of a LOAD standard. Auxiliary directivity correction increases the accuracy of normalization.

5.1.6.3 Isolation Calibration (Optional)

The Analyzer offers optional isolation (Ex) calibration to be combined with the following three methods of calibration:

- transmission normalization,
- one-path two-port calibration,
- full two-port calibration.

This calibration is performed by isolation measurement using LOAD standards connected to the both test ports of the Analyzer. Isolation calibration can be omitted in most of tests as the signal leakage between the test ports of the Analyzer is negligible.
Note: For isolation calibration, it is recommended to set narrow IF bandwidth, attenuation, and firmly fix the cables.

5.1.6.4 Full One-Port Calibration

Full one-port calibration involves connection of the following three standards to one test port:

- SHORT,
- OPEN,
- LOAD.

Measurement of the three standards allows for acquisition of all the three error terms (E_d, E_s, and E_r) of a one-port model. Full 1-port calibration is a highly accurate method for 1-port reflection measurements.

5.1.6.5 One-Path Two-Port Calibration

A one-path two-port calibration combines full one-port calibration with transmission normalization. This method allows for a more accurate estimation of transmission tracking error (E_t) than using transmission normalization.

One-path two-port calibration involves connection of the three standards to the source port of the Analyzer (as for one-port calibration) and a THRU standard connection between the calibrated source port and the other receiver port.

One-path two-port calibration allows for correction of E_d, E_s, and E_r error terms of the source port and a transmission tracking error term (E_t). This method does not derive source match error term (E_l) of a 2-port error model.

One-path two-port calibration is used for measurements of the parameters of a DUT in one direction, e.g. S_{11} and S_{21}.

5.1.6.6 Full Two-Port Calibration

A full two-port calibration involves seven connections of the standards. This calibration combines two full 1-port calibrations for each port, and one THRU connection, which provides two transmission measurements for each test port being a source. If optional isolation calibration is required, connect LOAD standards to the both test ports of the Analyzer and perform two isolation measurements for each source port.

Full 2-port calibration allows for correction of all the twelve error terms of a 2-port error model: E_{d1}, E_{d2}, E_{s1}, E_{s2}, E_{r1}, E_{r2}, E_{t1}, E_{t2}, E_{l1}, E_{l2}, E_{x1}, E_{x2} (correction of E_{x1}, E_{x2} can be omitted).
Full 2-port calibration is a highly accurate method of calibration for 2-port DUT measurements.

5.1.6.7 Sliding Load Calibration

In full one-port and full two-port calibrations it is possible to employ a SLIDING LOAD calibration standard instead of a fixed one. The use of the SLIDING LOAD standard allows for significant increase in calibration accuracy at high frequencies compared to the FIXED LOAD standard.

The sliding load calibration involves a series of measurements in different positions of the sliding element to compensate for reflection from the dissipation component.

To activate the sliding load calibration algorithm, the selected calibration kit should contain the calibration standard of sliding load type, and it should be assigned "load" class of the corresponding port. Calibration standard editing and class assignment are further described in detail.

The sliding load calibration is not applied at lower frequencies. To eliminate this limitation, use a FIXED LOAD standard in the lower part of the frequency range. For combined calibration with SLIDING and FIXED LOADS, use the procedure of standard subclasses assigning. This procedure is described in detail below.

5.1.6.8 Unknown Thru Calibration

It is possible to use an UNKNOWN THRU calibration standard instead of a DEFINED THRU to perform the full two-port calibration. An arbitrary reciprocal two-port device can be used as an UNKNOWN THRU. Along with the reciprocity condition (S_{21} = S_{12}), you need to know the approximate electrical length of the two-port, which is used for selection of the root in the UNKNOWN THRU algorithm equation.

To activate the unknown thru calibration algorithm, the selected calibration kit should contain the calibration standard of unknown thru type, and it should be assigned "thru" class for the two ports. Calibration standard editing and class assignment are further described in detail.

The requirement to know the electrical length of the two-port can be omitted if the condition of automatic root selection in the unknown thru algorithm is met. This condition is true if frequency increment is selected:

$$\Delta F < \frac{1}{4 \cdot \tau_0}$$

$$\tau_0$$ – delay of the two-port.

In other words, you can perform the calibration without setting the delay of the UNKNOWN THRU if the frequency increment is small enough.

For example, for UNKNOWN THRU with $l_0 \approx 100 \text{mm}$ and delay coefficient $1/\sqrt{c} \approx 0.7$, the delay will be $\tau_0 \approx 477 \text{ps}$. In this case the frequency increment for automatic selection of the root in UNKNOWN THRU algorithm should be set to
\[\Delta F < 524 \text{MHz}, \] or the number of points within the sweep span of 8 GHz should be no less than 16. To ensure reliable operation, set the frequency increment and the number of points with double margin at least.

Automatic root selection in the UNKNOWN THRU algorithm will be executed when the user sets the delay of the UNKNOWN THRU to zero; otherwise, the selected root will be the closest one by its phase to the \(S_{21} \) phase estimated based on the set delay. The delay is set in the calibration kit editing menu.

The full two-port calibration with the use of UNKNOWN THRU ensures high accuracy and for measurement of two-port devices. It is especially useful for calibration of the test setup with the non-insertable devices.

5.1.6.9 TRL Calibration

TRL (Thru-Reflect-Line) calibration requires the use of the following calibration standards:

- THRU between two ports,
- REFLECT with high reflection coefficient for each port,
- LINE between two ports.

A LINE can be used instead of a zero-length THRU as the first standard in TRL calibration. In this case, the calibration method is called LRL (Line-Reflect-Line). To denote the first standard of the TRL calibration, assign \(TRL\text{-Thru} \) class, which includes THRU and LINEs.

An OPEN or SHORT is usually used as a second standard in TRL calibration. To denote the second standard of the TRL calibration, assign \(TRL\text{-Reflect} \) class.

A LINE or two MATCHes (as they are an equivalent of a matched line of infinite length) are used as the third standard in TRL calibration. In last case, the calibration method is called TRM (Thru-Reflect-Match) or LRM (Line-Reflect-Match) respectively. To denote the third standard of the TRL calibration, assign \(TRL\text{-line/match} \) class, which includes LINEs and MATCHes.

TRL/LRL calibration is band limited. The cutoff frequencies are the difference between the lengths of TRL THRU and TRL LINE, the corresponding calculation is specified below. TRM/LRM calibration does not have limitations by frequency, however the use of it at higher frequencies is limited by the quality of the MATCHes. Normally, TRM/LRM calibration is used for the lower part of the frequency range, where TRL/LRL calibration does not work.

The LINEs and MATCHes used for TRL calibration must have precise and equal \(Z_0 \) impedance value. Precise air lines with an accurate \(Z_0 \) impedance of 50 \(\Omega \) are used as LINEs in coaxial path.

The exact length of the TRL THRU must be known. If a zero-length THRU is used, this condition is automatically fulfilled. If a LINE (for LRL calibration) is used, its length
must be known exactly. However, LRL calibration is allowed when the length of the first LINE is not known exactly. In this case, its length is assumed as equal to zero, the calibration plane being in the middle of the LINE, and not at the ports’ edges.

There is no requirement to know exactly the parameters of a TRL REFLECT standard. It should have high reflection coefficient, close to 1. The phase of the standard must be known as accurately as ±90°. Normally, any OPEN or SHORT meets this requirement. The next requirement is that the reflection coefficient must be the same for all the ports. If one standard is used for all the ports in turn, this requirement is automatically fulfilled. If two different standards are used (e.g. because of different types of port connectors), the user must ensure that the electrical specifications of the standards are equal.

The length of the third standard (TRL LINE) should be known approximately. The LINE length is used by the user to determine the lower and upper cutoff frequencies in TRL/LRL calibration. The phase incursion difference between TRL THRU and LINE in the useful frequency range of the TRL/LRL calibration should be no less than 20° and no more than 160°.

\[
20 < \frac{360 \cdot f \cdot \Delta L}{v} < 160,
\]

\[
\Delta L = L_1 - L_0,
\]

\(L_0\) – TRL THRU length,

\(L_1\) – TRL LINE length,

\(v\) – phase velocity in LINE (for air line it is \(c = 2.9979 \times 10^8\) m/s).

The useful frequency range of one pair of THRU/LINE is 1:8. To increase the frequency range, two or more TRL LINEs should be used. For two LINEs the useful frequency range increases to 1:64. The Analyzer allows using up to 8 different standards (so-called subclasses) within one standard class. Subclasses of standard are described further.

Note The TRL LINE cutoff frequencies must be entered by the user in the calibration kit editing menu.

TRL is the most accurate calibration for measurements of two-port devices.
5.1.7 Calibration Standards and Calibration Kits

Calibration standards are precision physical devices used for determination of errors in a measurement system.

A calibration kit is a set of calibration standards with a specific connector type and specific impedance.

The Analyzer provides definitions of calibration kits produced by different manufacturers. The user can add the definitions of own calibration kits or modify the predefined kits. Calibration kits editing procedure is described in the section 5.3.

To ensure the required calibration accuracy, select the calibration kit being used in the program menu. The procedure of calibration kit selection is described in section 5.2.1.

5.1.7.1 Definitions and Classes of Calibration Standards

Each calibration standard has a definition and belongs to one or several classes.

Calibration standard definition is a mathematical description of its parameters.

Calibration standard class is an application of the standard in a specific calibration method associated with a specific test port number. For example, "LOAD of port 1" in full two-port calibration.

5.1.7.2 Types of Calibration Standards

Calibration standard type is a category of physical devices used to define the parameters of the standard. The Analyzer supports the following types of the calibration standards:

- OPEN,
- SHORT,
- FIXED LOAD,
- SLIDING LOAD,
- THRU/LINE,
- UNKNOWN TRHU,
- standard defined by data (S-parameters).

Note: The type of a calibration standard should not be confused with its class. Calibration standard type is a part of the standard definition used for the calculation of its parameters.
5.1.7.3 Methods of Calibration Standard Defining

The Analyzer provides two methods of defining a calibration standard:

- calibration standard model (See section 5.1.7.4),
- table of S-parameters (See section 5.1.7.5).

The calibration standards defined by the table of S-parameters are called *Data-Based standards*.

Besides, each calibration standard is characterized by lower and upper values of the operating frequency. In the process of calibration, the measurements of the calibration standards outside the specified frequency range are not used.

5.1.7.4 Calibration Standard Model

A model of a calibration standard presented as an equivalent circuit is used for determining of S-parameters of the standard. The model is employed for standards of OPEN, SHORT, FIXED LOAD, THRU/LINE types.

One-port model is used for the standards OPEN, SHORT, and FIXED LOAD (See figure 5.4).

![One-port standard model](image)

Figure 5.4 One-port standard model
Two-port model is used for the standard THRU/LINE (See figure 5.5).

![Two-port standard model](image)

Figure 5.5 Two-port standard model

The description of the numeric parameters of an equivalent circuit model of a calibration standard is shown in table 5.3.

Table 5.3 Parameters of the calibration standard equivalent circuit model

<table>
<thead>
<tr>
<th>Parameter (as in the program)</th>
<th>Parameter Definition</th>
</tr>
</thead>
</table>
| Z_0 (Offset Z_0) | For a one-port standard, it is the offset impedance (of a transmission line) between the calibration plane and the circuit with lumped parameters.
For a two-port standard, it is the transmission line impedance between the two calibration planes. |
| T (Offset Delay) | The offset delay. It is defined as one-way propagation time (in seconds) from the calibration plane to the circuit with lumped parameters or to the other calibration plane. Each standard delay can be measured or mathematically determined by dividing the exact physical length by the propagation velocity. |
| R_{loss} (Offset Loss) | The offset loss in one-way propagation due to the skin effect. The loss is defined in Ω/sec at 1 GHz frequency. The loss in a transmission line is determined by measuring the delay T [sec] and loss L [dB] at 1 GHz frequency. The measured values are used in the following formula:
$$R_{\text{loss}}[\Omega/\text{s}] = \frac{L[dB] \cdot Z_0[\Omega]}{4.3429[dB] \cdot T[\text{s}]}$$ |
5.1.7.5 Data-Based Calibration Standards

The calibration standards defined by data are set using the table of S-parameters. Each line of the table contains frequency and S-parameters of the calibration standard. For one-port standards the table contains the value of only one parameter – S_{11}, and for two-port standards the table contains the values of all the four parameters – S_{11}, S_{21}, S_{12}, S_{22}.

The table of S-parameters can be filled in manually by the user or downloaded from a file of Touchstone format. Files with *.s1p extension are used for one-port standards, and files with *.s2p extension are used for two-port standards.

5.1.7.6 Scope of Calibration Standard Definition

Different methods of calibration apply either full or partial definitions of the calibration standard kits.

The full two-port calibration, full one-port calibration, one-path two-port calibration, and normalization use fully defined calibration standards, i.e. the standards with known S-parameters. The S-parameters of OPEN, SHORT, LOAD, and THRU/LINE must be defined by the model or by data.
| Note | The UNKNOWN THRU and SLIDING LOAD standards are exceptional in the above calibrations. The S-parameters of these standards are defined in the process of calibration. UNKNOWN THRU is used only in full two-port calibration. |

TRL calibration and its modifications (TRM, LRL, LRM) apply partial definition of the standards:

- TRL THRU standards must have the required value of Z_0 ($S_{11}=S_{22}=0$) and known length (delay),
- TRL LINE/MATCH standard must have the same value of Z_0 as the first standard,
- TRL REFLECT standard must have the phase known as accurately as $\pm90^\circ$.
5.1.7.7 Classes of Calibration Standards

Along with defining a calibration standard by a calibration model or data, the standard should also be assigned a specific class. One calibration standard may belong to several classes. The class assignment is performed for each particular calibration kit. The procedure of class assignment to the calibration standards is described in section 5.3.4.

Class assignment to calibration standards is required for specifying such properties as the calibration method, the role of a standard in the calibration, and the number of the port(s). The Analyzer supports the following classes of the calibration standards (See table 5.4).

Table 5.4 Classes of the calibration standards

<table>
<thead>
<tr>
<th>Calibration Methods</th>
<th>Class Label</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Two-Port Calibration</td>
<td>OPEN</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Full One-Port Calibration</td>
<td>SHORT</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>One-Path Two-Port Calibration</td>
<td>LOAD</td>
<td>1</td>
</tr>
<tr>
<td>Transmission Normalization</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Reflection Normalization</td>
<td>THRU</td>
<td>1-2</td>
</tr>
<tr>
<td>TRL Calibration</td>
<td>TRL THRU</td>
<td>1-2</td>
</tr>
<tr>
<td>LRL Calibration</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>TRM Calibration</td>
<td>TRL REFLECT</td>
<td>2</td>
</tr>
<tr>
<td>LRM Calibration</td>
<td>TRL LINE/MATCH</td>
<td>1-2</td>
</tr>
</tbody>
</table>

For example, if you assign the class "OPEN of port 1" to the OPEN-F- calibration standard, it will indicate that this standard is used for calibrating the first port using the following calibration methods: full two-port, full one-port, one-path two-port, and normalization.

Note: Class assignment changes the labels of the calibration standards on the calibration softkeys.
5.1.7.8 Subclasses of Calibration Standards

Subclasses are used for assignment of one class to several calibration standards. The procedure of subclass assignment is mainly employed for calibration within a wide frequency range by several calibration standards, each of which does not cover the full frequency range. Each class of standards can contain up to 8 subclasses.

For example, in your calibration kit the LOAD standard is defined as from 0 GHz to 2 GHz, and the LINE standard is defined as from 1.5 GHz to 12 GHz. To perform the TRM/TRL calibration within the full frequency range the LOAD should be assigned the subclass 1, and the LINE should be assigned the subclass 2 of the "TRL line/match" class.

If the standards have an overlapping frequency range (as in the example above, from 1.5 GHz to 2 GHz), the last measured standard will be used.

Note

Subclass assignment changes the labels of the calibration softkeys. The measurement softkey is replaced by the key, which opens the subclass menu containing the keys for measuring several calibration standards.
5.2 Calibration Procedures

5.2.1 Calibration Kit Selection

The calibration kit employed during a calibration should be selected according to the following procedure. If it is not specified in the list of the predefined calibration kits, you should add it. The procedure of adding and editing of the calibration kits is described in the section 5.3.

To open the list of the calibration kits (See figure 5.6), use the following softkeys:

Calibration > Cal Kit

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
<th>Select</th>
<th>Predefined</th>
<th>Modified</th>
<th>#STDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>89502B</td>
<td>Type-N 50Ω 6GHz Cal Kit (Agilent)</td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>89502F</td>
<td>Type-N 50Ω 9GHz Cal Kit (Agilent)</td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>89504B</td>
<td>Type-N 50Ω 18GHz Cal Kit with Sliding Load (Agilent)</td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>89504D</td>
<td>Type-N 50Ω 18GHz Cal Kit (Agilent)</td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>8950 (1A-150)</td>
<td>Type-N 50Ω 18GHz Cal Kit (Rosenberger)</td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>8950Q</td>
<td>Type-N 50Ω 18GHz Cal Kit (Maury Microwave)</td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>8950C</td>
<td>Type-N 50Ω 18GHz Cal Kit with Sliding Load (Maury Microwave)</td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>8950301E</td>
<td>3.5 mm 6GHz/9Khz Cal Kit (Agilent)</td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>89502B</td>
<td>3.5 mm 26.5GHz Cal Kit with Sliding Load (Agilent)</td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Figure 5.6 The list of calibration kits

Highlight the required line in the list of the calibration kits and use the following softkey:

Select

Or click on the checkbox in the row "Select" by the mouse.

Note Make sure that the selected calibration kit is checkmarked.
5.2.2 Reflection Normalization

Reflection normalization is the simplest calibration method used for reflection coefficient measurements (S_{11} or S_{22}). Only one standard (SHORT or OPEN) is measured (See figure 5.7) in the process of this calibration. You can also perform directivity calibration by measuring a LOAD standard.

Before starting calibration perform the following settings: select active channel, set the parameters of the channel (frequency range, IF bandwidth, etc), and select the calibration kit.

To open reflection normalization submenu, use the following softkeys:

Calibration > Calibrate > Response (Open) | Response (Short)

Select the test port to be calibrated using Select Port. Clicking this softkey you can switch between the test ports (measured parameters).

Connect an OPEN or a SHORT standard to the test port as shown in figure 5.7. Perform measurement using Open or Short softkey respectively.

The instrument status bar will indicate Calibration in progress... when the measurement is in progress. On completion of the measurement, a check mark will appear in the left part of the softkey.
To perform the optional directivity calibration, connect a LOAD standard to the test port as shown in figure 5.7 and perform measurement using **Load (Optional)** softkey.

The instrument status bar will indicate **Calibration in progress...** when the measurement is in progress. On completion of the measurement a check mark will appear in the left part of the softkey.

To complete the calibration procedure, click **Apply**.

This will activate the process of calibration coefficient table calculation and saving it into the memory. The error correction function will also be automatically enabled.

To clear the measurement results of the standards, click **Cancel**.

This softkey does not cancel the current calibration. To disable the current calibration turn off the error correction function (See section 5.2.10).

Note

You can check the calibration status in channel status bar (See table 5.5) or in trace status field (See table 5.6).
5.2.3 Transmission Normalization

Transmission normalization is the simplest calibration method used for transmission coefficient measurements (S_{21} or S_{12}). One THRU standard is measured (See figure 5.8) in the process of this calibration. You can also perform isolation calibration by measuring two LOAD standards.

![Figure 5.8 Transmission normalization](image)

Before starting calibration perform the following settings: select active channel, set the parameters of the channel (frequency range, IF bandwidth, etc), and select the calibration kit.

To open transmission normalization submenu, use the following softkeys:

Calibration > Calibrate > Response (Thru)

Select the direction of the calibration using **Select Ports** softkey. The label on the softkey indicates the following: receiver port – source port (measured parameter).

Connect a THRU standard between the test ports. If the port connectors allow through connection connect them directly (zero electrical length thru). Perform measurement using **Thru** softkey.

The instrument status bar will indicate **Calibration in progress**... when the measurement is in progress. On completion of the measurement a check mark will appear in the left part of the softkey.
To perform the optional isolation calibration, connect two LOAD standards to the test ports as shown in figure 5.8 and enable measurement using **Isolation (Optional)** softkey.

The instrument status bar will indicate **Calibration in progress...** when the measurement is in progress. On completion of the measurement a check mark will appear in the left part of the softkey.

To complete the calibration procedure, click **Apply**.

This will activate the process of calibration coefficient table calculation and saving it into the memory. The error correction function will also be automatically enabled.

To clear the measurement results of the standard, click **Cancel**.

This softkey does not cancel the current calibration. To disable the current calibration, turn off the error correction function (See section 5.2.10).

Note

You can check the calibration status in channel status bar (See table 5.5) or in trace status field (See table 5.6).
5.2.4 Full One-Port Calibration

Full one-port calibration is used for reflection coefficient measurements \(S_{11} \) or \(S_{22} \). The three calibration standards (SHORT, OPEN, LOAD) are measured (See figure 5.9) in the process of this calibration.

Before starting calibration perform the following settings: select active channel, set the parameters of the channel (frequency range, IF bandwidth, etc), and select the calibration kit.

![Figure 5.9 Full one-port calibration](image)

To open full one-port calibration submenu, use the following softkeys:

Calibration > Calibrate > Full 1-Port Cal

Select the test port to be calibrated using **Select Port**. Clicking this softkey you can switch between the test ports (measured parameters).

Connect SHORT, OPEN and LOAD standards to the selected test port in any consequence as shown in figure 5.9. Perform measurements clicking the softkey corresponding to the connected standard.

The instrument status bar will indicate **Calibration in progress...** when the measurement is in progress. On completion of the measurement a check mark will appear in the left part of the softkey.
To complete the calibration procedure, click **Apply**.

This will activate the process of calibration coefficient table calculation and saving it into the memory. The error correction function will also be automatically enabled.

To clear the measurement results of the standards, click **Cancel**.

This softkey does not cancel the current calibration. To disable the current calibration, turn off the error correction function (See section 5.2.10).

Note

You can check the calibration status in channel status bar (See table 5.5) or in trace status field (See table 5.6).
5.2.5 One-Path Two-Port Calibration

One-path two-port calibration is used for measurements of the DUT parameters in one direction, e.g. S_{11} and S_{21}. This method involves connection of the three calibration standards to the source port, and connection of a THRU standard between the calibrated source port and the other receiver port (See figure 5.10). You can also perform isolation calibration by measuring two LOAD standards.

Figure 5.10 One-path two-port calibration

Before starting calibration perform the following settings: select active channel, set the parameters of the channel (frequency range, IF bandwidth, etc), and select the calibration kit.

To open one-path two-port calibration submenu, use the following softkeys:

* Calibration > Calibrate > One Path 2-Port Cal
Select the direction of the calibration using Select Ports softkey. The label on the softkey indicates the following: receiver port – source port (measured parameters).

Connect SHORT, OPEN and LOAD standards to the source port in any consequence, as shown in figure 5.10. Perform measurements clicking the softkey corresponding to the connected standard.

Connect a THRU standard between the test ports. If the port connectors allow through connection connect them directly (zero electrical length thru). Perform measurement using Thru softkey.

The instrument status bar will indicate Calibration in progress... when the measurement is in progress. On completion of the measurement a check mark will appear in the left part of the softkey.

To perform the optional isolation calibration, connect two LOAD standards to the test ports as shown in figure 5.10 and enable measurement using Isolation (Optional) softkey.

The instrument status bar will indicate Calibration in progress... when the measurement is in progress. On completion of the measurement a check mark will appear in the left part of the softkey.

To complete the calibration procedure, click Apply.

This will activate the process of calibration coefficient table calculation and saving it into the memory. The error correction function will also be automatically enabled.

To clear the measurement results of the standards, click Cancel.

This softkey does not cancel the current calibration. To disable the current calibration, turn off the error correction function (See section 5.2.10).

Note
You can check the calibration status in channel status bar (See table 5.5) or in trace status field (See table 5.6).
5.2.6 Full Two-Port Calibration

Full two-port calibration combines two one-port calibrations for each test port with measurement of transmission and reflection of a THRU standard in both directions (See figure 5.11). You can also perform isolation calibration by measuring two LOAD standards.

Before starting calibration perform the following settings: select active channel, set the parameters of the channel (frequency range, IF bandwidth, etc), and select the calibration kit.

To open full two-port calibration submenu, use the following softkeys:

Calibration > Calibrate > Full 2-Port Cal
5 CALIBRATION AND CALIBRATION KIT

Connect SHORT, OPEN and LOAD standards to the 1 and 2 ports in any consequence, as shown in figure 5.11. Perform measurements clicking the softkey corresponding to the connected standard.

Connect a THRU standard between the test ports. If the port connectors allow through connection connect them directly (zero electrical length thru). Perform measurement using **Port 1–2 Thru** softkey.

The instrument status bar will indicate **Calibration in progress**... when the measurement is in progress. On completion of the measurement a check mark will appear in the left part of the softkey.

To perform the optional isolation calibration, connect two LOAD standards to the test ports as shown in figure 5.11 and enable measurement using **Port 1–2 Isol (Optional)** softkey.

The instrument status bar will indicate **Calibration in progress**... when the measurement is in progress. On completion of the measurement a check mark will appear in the left part of the softkey.

To complete the calibration procedure, click **Apply**.

This will activate the process of calibration coefficient table calculation and saving it into the memory. The error correction function will also be automatically enabled.

To clear the measurement results of the standards, click **Cancel**.

This softkey does not cancel the current calibration. To disable the current calibration, turn off the error correction function (See section 5.2.10).

Note

You can check the calibration status in channel status bar (See table 5.5) or in trace status field (See table 5.6).
5.2.6.1 Unknown Thru Calibration

The unknown thru calibration procedure is same as the one for a full two-port calibration described in the previous section.

To start unknown thru calibration, first add UNKNOWN THRU standard to the description of the calibration kit and assign the class to it. After that, the unknown thru measurement softkey will become available in the two-port calibration menu.

See section 5.3.2 for a calibration standard definition in a calibration kit. When adding the unknown thru standard to a kit you should specify just two parameters: UNKNOWN THRU type of the standard and approximate delay of propagation in one direction. You can enter zero value for delay for it to be automatically determined during calibration (See section 5.1.6.8).

See section 5.3.4 for the calibration standard class assignment. A newly added UNKNOWN THRU standard is to be assigned to “Thru, Port 1-2” class.
5.2.7 TRL Calibration

TRL calibration is the most accurate calibration method for two-port measurements (See figure 5.12):

Figure 5.12 TRL calibration
Before starting calibration, perform the following settings: select active channel, set the parameters of the channel (frequency range, IF bandwidth, etc), select the calibration kit.

To open TRL calibration submenu, use the following softkeys:

Calibration > Calibrate > 2-Port TRL Cal

Connect a TRL THRU (THRU or LINE) standard between the test ports. Perform measurement using **1–2 Thru/Line** softkey.

Connect a TRL REFLECT standard to the test ports in any order. Perform measurement using **Port 1 Reflect** and **Port 2 Reflect** softkey.

Connect a TRL LINE/MATCH (LINE between the test ports and 2 LOADs to each port). Perform measurement using **Port 1-2 Line/Match** softkey.

The instrument status bar will indicate **Calibration in progress...** when the measurement is in progress. On completion of the measurement a check mark will appear in the left part of the softkey.

To complete the calibration procedure, click **Apply**.

This will activate the process of calibration coefficient table calculation and saving it into the memory. The error correction function will also be automatically enabled.

Note

System correction will turn automatically off when you press **Apply** softkey to perform TRL calibration (See section 8.4).

To clear the measurement results of the standards, click **Cancel**.

This softkey does not cancel the current calibration. To disable the current calibration, turn off the error correction function (See section 5.2.10).

Note

You can check the calibration status in channel status bar (See table 5.5) or in trace status field (See table 5.6).
5.2.8 Calibration Using Subclasses

When several calibration standards of one class are used for calibration, you should assign subclasses to these standards using the calibration kit editing function. The procedure of subclass assignment is described in section 5.3.4.

When assigning two or more subclasses to one class of calibration standards, the standard measurement softkey is replaced by the softkey, which opens the subclass menu containing the list of all the standards of this class.

Further this section describes an example of calibration using the calibration kit for TRL calibration, in which the "TRL LINE/MATCH" class contains 3 subclasses: load (Lowband), line 2 (TRL Line2), and line 3 (TRL Line3).

In the main menu of TRL calibration the 1-2 Line/Match softkey will open the subclass menu (if the above mentioned condition is met).

Connect the Lowband, Line2 and Line3 to the test ports in any consequence and perform measurements clicking the softkey corresponding to the connected standard.

If two standards have an overlapping frequency range the last measured standard will be used in the overlapping region.

To view additional information about each standard frequency range, in which its measurements are applied (See figure 5.13), press Info softkey.

Figure 5.13 Information on calibration standard measurements.
5.2.9 Calibration Using Sliding Load

The SLIDING LOAD can be used instead of a FIXED LOAD in full one-port and two-port calibrations.

If a calibration kit contains a SLIDING LOAD, the standard measurement softkey is replaced by the softkey, which opens the submenu containing the SLIDING LOAD calibration logic.

The sliding load calibration involves a series of measurements in different positions of the sliding element. The minimum number of measurements is 5, the maximum number of measurements is 8.

In the main menu of one-port or two-port calibration the Load softkey will open the sliding load menu (if the above mentioned condition is met).

Connect the SLIDING LOAD to a selected test ports and perform a series of measurements in different positions of the sliding element clicking the Position 1, Position 2 ... Position 8 softkeys.

Note

The sliding load had a low cutoff frequency. To perform calibration in the full frequency range, use two loads: FIXED LOAD standard in the lower part of the frequency range, and SLIDING LOAD in the upper frequency range using subclasses (See section 5.2.8).
5.2.10 Error Correction Disabling

This feature allows the user to disable the error correction function, which automatically becomes enabled after completion of calibration by any method.

To disable and enable again the error correction function, use the following softkeys:

```
Calibration > Correction
```

5.2.11 Error Correction Status

The error correction status is indicated for each trace individually. Also there is a general status of error correction for all the traces of a channel.

The general error correction status for all the S-parameter traces of a channel is indicated in the specific field on a channel status bar (See table 5.5). For channel status bar description, see section 4.2.6.

Table 5.5 General error correction status

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cor</td>
<td>Error correction is enabled. The stimulus settings are the same for the measurement and the calibration.</td>
<td>If the function is active for all the traces – black characters on gray background.</td>
</tr>
<tr>
<td>C?</td>
<td>Error correction is enabled. The stimulus settings are not the same for the measurement and the calibration. Interpolation is applied.</td>
<td>If the function is active only for some of the traces (other traces are not calibrated) – white characters on red background.</td>
</tr>
<tr>
<td>C!</td>
<td>Error correction is enabled. The stimulus settings are not the same for the measurement and the calibration. Extrapolation is applied.</td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td>Error correction is turned off.</td>
<td>For all the traces. White characters on red background.</td>
</tr>
<tr>
<td>---</td>
<td>No calibration data. No calibration was performed.</td>
<td></td>
</tr>
</tbody>
</table>

The error correction status for each individual trace is indicated in the trace status field (See table 5.6). For trace status field description, see section 4.2.2.
Table 5.6 Trace error correction status

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO</td>
<td>OPEN response calibration</td>
</tr>
<tr>
<td>RS</td>
<td>SHORT response calibration</td>
</tr>
<tr>
<td>RT</td>
<td>THRU response calibration</td>
</tr>
<tr>
<td>OP</td>
<td>One-path 2-port calibration</td>
</tr>
<tr>
<td>F1</td>
<td>Full 1-port calibration</td>
</tr>
<tr>
<td>F2</td>
<td>Full 2-port or TRL calibration</td>
</tr>
</tbody>
</table>

5.2.12 System Impedance Z_0

Z_0 is the system impedance of a measurement path. Normally it is equal to the impedance of the calibration standards, which are used for calibration. The Z_0 value should be specified before calibration, as it is used for calibration coefficient calculations.

To set the system impedance Z_0, use the following softkeys:

Calibration > System Z0

Note: Selection of calibration kit automatically determines the system impedance in accordance with the value specified for the kit.
5.2.13 Port Extension

The port extension function enables you to eliminate the fixture (with or without losses) effects on the measurement results. The function virtually extends the test ports moving the calibration plane to the terminals of the DUT (by the length of the fixture). The fixture parameters are defined by the user for each port individually (See figure 5.14).

![Figure 5.14 Port extension](image)

The phase incursion caused by electrical delay is compensated for, when a lossless fixture needs to be removed:

\[e^{j2\pi f t} \]

where

\(f \) – frequency, Hz,
\(t \) – electrical delay, sec.

The feature of removing a lossless fixture is similar to the feature of electrical delay setting for a trace (See section 4.9.7), but unlike the latter it applies to all the traces of the channel. It compensates for a fixture length in transmission measurements and for a double fixture length in reflection measurements.

To remove a fixture with losses, the following methods of loss defining (in one, two or three frequency points) are applied:

1. Frequency-independent loss at DC - \(L_0 \)

 \[L(f) = L_0 \]

2. Frequency-dependent loss determined by the losses in two frequency points: \(L_0 \) at DC, and \(L_1 \) at frequency \(F_1 \)
3. Frequency-dependent loss determined by the losses in three frequency points: L_0 at DC, L_1 at frequency F_1, and L_2 at frequency F_2

$$L(f) = L_0 + (L_1 - L_0) \sqrt{\frac{f}{F_1}}$$

$$L(f) = L_0 + (L_1 - L_0) \left(\frac{f}{F_1}\right)^n$$

$$n = \log\frac{\frac{L_1}{L_2}}{\log\frac{F_1}{F_2}}$$
5.3 Calibration Kit Management

This section describes how to edit the calibration kit description, add and delete a calibration kit.

The Analyzer provides a table for 50 calibration kits. The first part of the table contains the predefined kits. The second part of the table is for calibration kit added by the user.

A calibration kit redefining can be required for the following purposes:

- To change the port assignment of a standard to ensure connector type (male, female) matching;
- To add a user-defined standard into the kit, e.g. a non zero-length thru;
- To precise the standard parameters to improve the calibration accuracy.

A new user-defined calibration kit adding can be added when a required kit is not included in the list of the predefined kits.

Deleting function is available for user-defined calibration kits only.

Any changes made to the calibration kits are automatically saved into the nonvolatile memory of the Analyzer. For the saving no clicking on a “Save” button is required.

Note: Changes to a predefined calibration kit can be cancelled any time and the initial state will be restored.

5.3.1 Table of Calibration Kits

The table of calibration kits (See figure 5.15) allows selecting and editing of the calibration kits.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
<th>Select</th>
<th>Redefined</th>
<th>Modified</th>
<th>STDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Type-N 50Ω 6GHz Cal Kit (Agilent)</td>
<td>0</td>
<td>Yes</td>
<td>No</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Type-N 50Ω 9GHz Cal Kit (Agilent)</td>
<td></td>
<td>Yes</td>
<td>No</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Type-N 50Ω 10GHz Cal Kit with Sliding Load (Agilent)</td>
<td></td>
<td>Yes</td>
<td>No</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Type-N 50Ω 18GHz Cal Kit (Agilent)</td>
<td></td>
<td>Yes</td>
<td>No</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Type-N 50Ω 18GHz Cal Kit (Rosenberger)</td>
<td></td>
<td>Yes</td>
<td>No</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Type-N 50Ω 18GHz Cal Kit (Maury Microwave)</td>
<td></td>
<td>Yes</td>
<td>No</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>Type-N 50Ω 18GHz Cal Kit with Sliding Load (Maury Mic)</td>
<td></td>
<td>Yes</td>
<td>No</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>Type-N 50Ω 18GHz Cal Kit (Agilent)</td>
<td></td>
<td>Yes</td>
<td>No</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>Type-N 50Ω 18GHz Cal Kit with Sliding Load (Agilent)</td>
<td></td>
<td>Yes</td>
<td>No</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 5.15 Table of calibration kits
To open the table of calibration kits, use the following softkeys:

Calibration > Cal Kit

To edit a calibration kit, highlight its line in the table.

The calibration kit editing is comprised of two main procedures: defining of calibration standard (sections 5.3.2 and 5.3.3) and assignment of classes to calibration standards (section 5.3.4). First you need to perform defining of the calibration standards, and then the assignment of classes to them. Defining of calibration standards and assignment of classes to them is performed in different tables.

The label of a calibration kit and its description can be edited in the table of the calibration kits (figure 5.15). The label appears on the calibration menu softkeys. The description is just for information of the user.

The table also contains display-only fields: flags of predefined and modified calibration kits and the counter of the calibration standards in a kit.

5.3.1.1 Calibration Kit Selection for Editing

Move the highlighting to the required line in the calibration kit (See figure 5.15) table using “↑” and “↓” arrows.

Note

The checkmark in the “Select” field does not matter for the kit selection for editing, it selects the calibration kit for calibration.

5.3.1.2 Calibration Kit Label and Description Editing

Move the highlighting to the required line in the calibration kit (See figure 5.15) table using “↑” and “↓” arrows and click on the «Enter» softkey. Then enter the new text in the table.

To activate the on-screen keyboard, click **On-Screen Keyboard** softkey.
5.3.1.3 Predefined Calibration Kit Restoration

Move the highlighting to the required line in the calibration kit (See figure 5.15).

To cancel the user changes of a predefined calibration kit, use the following softkeys:

- **Restore Cal Kit**

Note

It is possible to restore only such calibration kits, whose “Predefined” and “Modified” fields have “Yes” labeling.

5.3.1.4 User-Defined Calibration Kit Deleting

Move the highlighting to the required line in the calibration kit (See figure 5.15).

To delete a user-defined calibration kit from the table, use the following softkey:

- **Erase Cal Kit**

Note

It is possible to delete only such calibration kits, whose “Predefined” field have “No” labeling.

5.3.1.5 Calibration Kit Saving to File

Saving of a calibration kit to file is necessary for copying it to a different line of the table or to a different Analyzer.

This command is not necessary for saving of changes made by the user to the definitions of the kit as these changes are saved automatically.

Move the highlighting to the required line in the calibration kit (See figure 5.15).

To save a calibration kit to file, click the following softkey:

- **Save to File**

5.3.1.6 Calibration Kit Loading from File

You can load the calibration kit files created by the previous command.
Move the highlighting to the required line in the calibration kit (See figure 5.15).

To load a calibration kit from file, click the following softkey:

Load from File...

5.3.2 Calibration Standard Definition

The table of the calibration standards (See figure 5.16) includes the full list of the standards in one calibration kit. For the standards defined by the model, the table contains the model parameters. For the data-based standards, the parameters of the model remain blank; S-parameters of such standards are represented in a different table (See section 5.3.3).

![Figure 5.16 Calibration standard definition table](image)

To open the table of calibration standard definitions, use the following softkeys:

Calibration > Cal Kit > Define STDs
5.3.2.1 Standard Adding to Calibration Kit

To add a calibration standard to the table of calibration standard definition (See figure 5.16), use the following softkey:

Add STD

5.3.2.2 Standard Deleting from Calibration Kit

To delete a calibration standard from the table of calibration standard definition (See figure 5.16), use the following softkey:

Delete STD

5.3.2.3 Calibration Standard Editing

Moving in the table of calibration standard definitions (See figure 5.16) using navigation keys, enter the parameter values for a calibration kit:

<table>
<thead>
<tr>
<th>Standard No.</th>
<th>The calibration standard number is specified in the calibration kit data sheet (just for information).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Type</td>
<td>Select the standard type:</td>
</tr>
<tr>
<td></td>
<td>- Open,</td>
</tr>
<tr>
<td></td>
<td>- Short,</td>
</tr>
<tr>
<td></td>
<td>- Load,</td>
</tr>
<tr>
<td></td>
<td>- Thru/Line,</td>
</tr>
<tr>
<td></td>
<td>- Unknown Thru,</td>
</tr>
<tr>
<td></td>
<td>- Sliding Load,</td>
</tr>
<tr>
<td></td>
<td>- Data-Based</td>
</tr>
<tr>
<td>Standard Label</td>
<td>Standard labels specified on the calibration menu softkeys.</td>
</tr>
<tr>
<td>Freq. Min.</td>
<td>Lower cutoff frequency of the standard.</td>
</tr>
<tr>
<td>Offset Delay</td>
<td>Offset delay value in one direction (s).</td>
</tr>
</tbody>
</table>
Offset Z0
Offset wave impedance value (Ω).

Offset Loss
Offset loss value (Ω/s).

Load Impedance
Lumped load impedance value (Ω).

C0 \(10^{-15}\) F
For an OPEN standard, \(C_0\) coefficient in the polynomial formula of the fringe capacitance:
\[C = C_0 + C_1 f + C_2 f^2 + C_3 f^3 \]

C1 \(10^{-27}\) F/Hz
For an OPEN standard, \(C_1\) coefficient in the polynomial formula of the fringe capacitance.

C2 \(10^{-38}\) F/Hz²
For an OPEN standard, \(C_2\) coefficient in the polynomial formula of the fringe capacitance.

C3 \(10^{-46}\) F/Hz³
For an OPEN standard, \(C_3\) coefficient in the polynomial formula of the fringe capacitance.

L0 \(10^{-12}\) H
For a SHORT standard, \(L_0\) coefficient in the polynomial formula of the residual inductance:
\[L = L_0 + L_1 f + L_2 f^2 + L_3 f^3 \]

L1 \(10^{-24}\) H/Hz
For a SHORT standard, \(L_1\) coefficient in the polynomial formula of the residual inductance.

L2 \(10^{-33}\) H/Hz²
For a SHORT standard, \(L_2\) coefficient in the polynomial formula of the residual inductance.

L3 \(10^{-42}\) H/Hz³
For a SHORT standard, \(L_3\) coefficient in the polynomial formula of the residual inductance.

5.3.2.4 Calibration Standard Copy/Paste Function

To save a calibration standard into clipboard, highlight the required line in the calibration standard definition table (See figure 5.16) and click the following softkey:

- **Copy STD**
- or
- **Copy All STDs**
5.3.2.5 Management of Sequence in Standard Table

To change the sequence in the table, use the following softkeys:

STD Up
or
STD Down
5.3.3 Table of Calibration Standard S-Parameters

The table of calibration standard S-parameters (See figure 5.17) allows viewing and editing of S-parameters of the calibration standards of the “Data-Based” type.

| Frequency | P(Log|S|1|) | Arg(|S|1|) | M(Log|S|2|) | Arg(|S|2|) |
|--------------------|------|--------|--------|--------|--------|
| 1 30 kHz | -67.620094 dB | 53.4003888 ° | 0.0000046760 dB | 0.29519528 ° |
| 2 8.299 MHz | -81.086188 dB | -119.01476 ° | 0.00303721088 dB | 0.32293711 ° |
| 3 16.2994 MHz | -78.228765 dB | -128.604145 ° | 0.00322754052 dB | 0.320729452 ° |
| 4 24.2991 MHz | -76.6949537 dB | -126.226624 ° | 0.00355760667 dB | 0.324134852 ° |
| 5 32.2996 MHz | -75.3544463 dB | -123.320098 ° | 0.00369696155 dB | 0.324629352 ° |
| 6 40.2995 MHz | -73.9007876 dB | -118.524822 ° | 0.00326908095 dB | 0.357641695 ° |
| 7 48.2992 MHz | -72.307606 dB | -114.21760 ° | 0.00316305402 dB | 0.357641695 ° |
| 8 56.2999 MHz | -70.856894 dB | -109.418729 ° | 0.00257673931 dB | 0.322943528 ° |
| 9 64.2996 MHz | -69.1166427 dB | -105.357991 ° | 0.00432183968 dB | 0.316678885 ° |

Figure 5.17 Table of calibration standard S-parameters

To open the table of calibration standard S-parameters, move the required line in the table (See figure 5.17), and click the following softkeys:

Define STD Data

Note Define STD Data softkey is disabled if the type of the standard is other than “Data-Based”.

There are two different tables for one-port standards and for two-port standards. The table contains one parameter (S11) for one-port standards, and four parameters (S11, S21, S12, S22) for two-port standards. Before the user fills in the table, its type will be defined: by the Touchstone format (s1p or s2p) if the data is downloaded from a file, or the user will be requested to specify the type if the data is entered by the user.

The data in the table can be represented in three formats according to the user settings:

- Real part and Imaginary part,
- Linear magnitude and Phase (°),
- Logarithmic magnitude (dB) and Phase (°).

The following rule is applied for the calibration of a two-port standard: the standard is considered connected by port 1 (S11) to the port with smallest number, and by port 2 (S22) to the port with the biggest number. If you need to “reverse” a two-port standard, use the “Port Reverse” function (section 5.3.3.5).
5.3.3.1 Line Adding to Table

To add a line to the table of the calibration standard S-parameters (See figure 5.17), use the following softkeys:

- **Add Row**

5.3.3.2 Line Deleting from Table

To delete a line from the table of the calibration standard S-parameters (See figure 5.17), use the following softkey:

- **Delete Line**

5.3.3.3 Table Clearing

To clear the entire table of the calibration standard S-parameters (See figure 5.17), use the following softkey:

- **Clear Data**

5.3.3.4 Table Format Selecting

To select the format of the table of the calibration standard S-parameters (See figure 5.17), use the following softkey:

- **Format > Real/Imag | Magn/Angle | MLog/Angle**
5.3.3.5 Port Reversing

To enable/disable reversing of the ports of a two-port standard, use the following softkey:

Reverse Ports

5.3.3.6 Data Opening from File

To open the data from Touchstone file, use the following softkey:

Load Data from Touchstone file...

In the pop-up dialog select the file type (s1p or s2p) and specify the file name.
5.3.4 Calibration Standard Class Assignment

The assignment of classes to the standards of the selected calibration kit is made in the table of standard classes (See figure 5.18).

Standard labels filled in the table cells by selecting them from the list of calibration kit standards.

Each row of the table corresponds to the standard class specified in the two left columns of the table.

If a single standard is assigned to the class then it filled into the "Subclass 1" column. If several standards are assigned to the class, as described in section 5.2.8, then "Subclass 2", “Subclass 3”, etc columns are filled in.

![Figure 5.18 Table of calibration standard classes](image)

To open the table of calibration standard classes, use the following softkeys:

Calibration > Cal Kit > Specify CLSs

5.3.4.1 Standard Class Table Editing

Moving in the table of calibration standard classes (See figure 5.18) using navigation keys, click «Enter» in the required cell for the pop-up menu. Select the standard label in the pop-up menu to assign it the class and port number specified in the left part of the table.
5.3.4.2 Standard Deleting from Standard Class Table

Moving in the table of calibration standard classes (See figure 5.18) using navigation keys, click «Enter» in the required cell for the pop-up menu. Select the line None in the pop-up menu to delete the standard contained in the cell.

To delete all the standards in the table of calibration standard classes, use the following softkey:

Clear All CLSs

5.3.4.3 Strict Class Assignment Function

This function allows for limitation of the one standard type(s) available in each class by the feature of strict correspondence (See table 5.7). If this function is disabled, any class can be assigned to the standard.

Table 5.7 Standard class and standard type correspondence

<table>
<thead>
<tr>
<th>N</th>
<th>Standard Class</th>
<th>Standard Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OPEN</td>
<td>• Open,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Data-Based (One Port)</td>
</tr>
<tr>
<td>2</td>
<td>SHORT</td>
<td>• Short,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Data-Based (One Port)</td>
</tr>
<tr>
<td>3</td>
<td>LOAD</td>
<td>• Load,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sliding Load,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Data-Based (One Port)</td>
</tr>
<tr>
<td>4</td>
<td>THRU</td>
<td>• Thru/Line,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Data-Based (Two Port)</td>
</tr>
<tr>
<td>5</td>
<td>TRL THRU</td>
<td>• Thru/Line,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Data-Based (Two Port)</td>
</tr>
<tr>
<td>6</td>
<td>TRL REFLECT</td>
<td>• Open,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Short,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Data-Based (One Port)</td>
</tr>
<tr>
<td>7</td>
<td>TRL LINE/MATCH</td>
<td>• Load,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Thru/Line</td>
</tr>
</tbody>
</table>
5.3.4.4 Function of Group Assignment of Port Number

This function allows for automatic assignment of one standard to all the ports of a specific class when assigned to at least one port.

To enable/disable the function of group assignment of port number, use the following softkey:

Assign Same STDs to All Ports
5.4 Power Calibration

The Analyzer ensures steady power level at the test port inputs with the specified accuracy. The power level is defined by the user from –60 dBm to +10 dBm.

A DUT is connected to the Analyzer by cables, which have some losses. The power calibration allows the user to maintain a more accurate power level at a DUT input, adjusted to the use of the cables.

The power calibration is performed by an external power meter connected to the cables’ ends, which will be later connected to the DUT.

After the power calibration is complete, power correction automatically turns on. Later the user can disable or enable again the power correction function.

The power calibration is performed for each port and each channel individually.

| Note | The power correction status is indicated in the trace status field (See section 4.2.2) and in the channel status bar (See section 4.2.6). |

5.4.1 Loss Compensation Table

The loss compensation function allows the user to apply compensation for unwanted losses produced between the power meter and the calibrated port in the process of power calibration. Define the losses, which you need to compensate in the table (See figure 5.19) specifying frequency and losses.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001 kHz</td>
<td>0.1 dB</td>
</tr>
<tr>
<td>1 GHz</td>
<td>0.2 dB</td>
</tr>
<tr>
<td>2 GHz</td>
<td>0.4 dB</td>
</tr>
<tr>
<td>3 GHz</td>
<td>0.5 dB</td>
</tr>
<tr>
<td>4 GHz</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.19 Loss compensation table

Linear interpolation will be applied to the losses in the intermediary frequency points.

The loss compensation table is defined for each port individually.

| Note | To have the losses compensated for, you need to enable this function and fill out the table before you start the power calibration procedure. |

5.4.2 Power Calibration Procedure

Perform connection and setting of an external power meter as described in section 8.10. Connect the sensor to one of the test ports of the Analyzer and perform calibration as described below. Then repeat the calibration for the other test port.

To select the calibrated port number, use the following softkeys:

Calibration > Power Calibration > Select Port

To zero power meter, use the following softkeys:

Calibration > Power Calibration > Power Sensor Zero Correction

Note

Power meter sensor can be connected to the port, as during zero setting the output signal of the port is turned off.

To execute power calibration, use the following softkeys:

Calibration > Power Calibration > Take Cal Sweep

Note

After the power calibration is complete, power correction automatically turns on.

5.4.3 Power Correction Setting

To enable/disable power correction, use the following softkeys:

Calibration > Power Calibration > Correction

5.4.4 Loss Compensation Table Editing

If you need to apply the loss compensation, enable this function and fill out the table before you start the power calibration procedure. Fill out the table for each port individually.
To add a new row to the loss compensation table, use the following softkeys:

Calibration > Power Calibration > Loss Compen > Add

A new row will appear under the highlighted one.

To delete a highlighted row, use the following softkeys:

Calibration > Power Calibration > Loss Compen > Delete

To clear all the table, use the following softkeys:

Calibration > Power Calibration > Loss Compen > Clear Loss Table

To save the table into a *.lct file on the hard, use the following softkeys:

Calibration > Power Calibration > Loss Compen > Export Loss Table

To open the table from a *.lct file from the hard, use the following softkeys:

Calibration > Power Calibration > Loss Compen > Import Loss Table

Enter frequency and loss values into the table, scrolling by navigation keys.

To enable the loss compensation function, use the following softkeys:

Calibration > Power Calibration > Loss Compen > Compensation
5.5 Receiver Calibration

When you perform absolute power measurements (See section 4.7.3), the gain of some receivers are factory calibrated to test port inputs.

In practice, the power is measured at test port inputs made by the fixture producing losses. The receiver calibration enables the user to measure the power at port inputs with higher accuracy.

The receiver calibration is performed by sending the calibration signal from the source port to the calibrated port input. The receiver calibration requires the connection between the both test ports using THRU line.

To make the receiver calibration most accurate, first perform power calibration on the source port. If the source power calibration was not performed, to get good results you need to connect the calibrated port to the source port on the front panel.

After the receiver calibration is complete, receiver correction automatically turns on. Later the user can disable or enable again the receiver correction function.

The receiver calibration can be performed only for the test signal receivers (A and B) of each port (See figure 4.11).

The power calibration is performed for each port and each channel individually.

| Note | The power correction status is indicated in the trace status field (See section 4.2.2) and in the channel status bar (See section 4.2.6). |

5.5.1 Receiver Calibration Procedure

Connect a THRU line between the receiver port and the source port.

- To select the calibrated port number, use the following softkeys:
 - Calibration > Receiver Calibration > Select Port

- To select the source port number, use the following softkeys:
 - Calibration > Receiver Calibration > Source Port

- To execute receiver calibration, use the following softkeys:
 - Calibration > Receiver Calibration > Take Cal Sweep
Note
After the receiver calibration is complete, receiver correction automatically turns on.

5.5.2 Receiver Correction Setting

To enable/disable receiver correction, use the following softkeys:

Calibration > Receiver Calibration > Correction
5.6 Scalar Mixer Calibration

Scalar mixer calibration is the most accurate method of calibration applied to measurements of mixers in frequency offset mode.

The scalar mixer calibration requires OPEN, SHORT, and LOAD standards as well as external power meter (See figure 5.20). The power meter connection and setup is described in section 8.8.

Figure 5.20 Scalar mixer calibration setup
The scalar mixer calibration allows the following measurements:

- reflection S_{11} and S_{22} parameters in vector form;
- transmission S_{21} and S_{12} parameters in scalar form.

Before you start the calibration, perform the following settings: select active channel and set its parameters (frequency span, IF bandwidth, etc), and define the calibration kit. Then enable the frequency offset mode and perform the port settings.

Note

The scalar mixer calibration can be performed without frequency offset. You can enable the frequency offset mode later, during mixer measurements. In this case the basic frequency range should cover the frequency spans of the ports in offset mode. This procedure is convenient but less accurate as involves interpolation.

To access the scalar mixer calibration menu, use the following softkeys:

Calibration > Mixer/Converter Calibration > Scalar Mixer Calibration

Click **Reflection Port 1** softkey.

Connect SHORT, OPEN and LOAD standards to port 1 as shown in figure 5.20. Perform two measurements over two frequency ranges (**Freq 1** and **Freq 2**) for each standard using the respective standard softkeys.

If the frequency offset is disabled, after measurement over one frequency range the result will be automatically saved for the both frequency ranges.

The instrument status bar will indicate **Calibration in progress**... when the measurement is in progress. On completion of the measurement, a check mark will appear in the left part of the softkey.
Click **Reflection Port 2** softkey.

Connect SHORT, OPEN and LOAD standards to port 2 as shown in figure 5.20. Perform two measurements over two frequency ranges (**Freq 1** and **Freq 2**) for each standard using the respective standard softkeys.

If the frequency offset is disabled, after measurement over one frequency range the result will be automatically saved for the both frequency ranges.

The instrument status bar will indicate *Calibration in progress*... when the measurement is in progress. On completion of the measurement, a check mark will appear in the left part of the softkey.

Click **Transmission** softkey.

Connect a THRU standards between the test ports. If the port connectors allow, connect the ports directly together (through line with zero electrical length). Perform two measurements over two frequency ranges (**Freq 1** and **Freq 2**).

If the frequency offset is disabled, after measurement over one frequency range the result will be automatically saved for the both frequency ranges.

The instrument status bar will indicate *Calibration in progress*... when the measurement is in progress. On completion of the measurement, a check mark will appear in the left part of the softkey.

Click **Power** softkey.

To zero the power meter, click **Power Sensor Zero Correction** softkey.

Note

Power meter sensor can be connected to the port, as during zero setting the output signal of the port is turned off.
Connect the power meter to port 1. Perform two measurements over two frequency ranges (Freq 1 and Freq 2).

If the frequency offset is disabled, after measurement over one frequency range the result will be automatically saved for the both frequency ranges.

Connect the power meter to port 2. Perform two measurements over two frequency ranges (Freq 1 and Freq 2).

The instrument status bar will indicate Calibration in progress... when the measurement is in progress. On completion of the measurement, a check mark will appear in the left part of the softkey.

To complete the calibration procedure, click Apply.

This will activate the process of calibration coefficient table calculation and saving it into the memory. The error correction function will also be automatically enabled.

To clear the measurement results of the standards, click Cancel.

This softkey does not cancel the current calibration. To disable the current calibration turn off the error correction function.

Note

You can check the calibration status in channel status bar (See table 5.5) or in trace status field (See table 5.6) – SMC label.
5.7 Vector Mixer Calibration

Vector scalar calibration is a calibration method applied for mixer measurements. This method allows measurement of both reflection and transmission S-parameters in vector form, including phase and group delay of transmission coefficient.

The vector mixer measurements require an additional mixer with filter, which is called calibration mixer.

The filter separates the IF, which is the input frequency for the mixer under test:

- RF + LO
- RF – LO
- LO – RF

Both calibration mixer and mixer under test are powered from one LO.

The vector mixer measurement is a combination of a 2-port calibration and a de-embedding function (See figure 5.21).

![Figure 5.21 Vector mixer measurements](image)

The de-embedding function requires an S-parameter file of the circuit. Acquisition of such a file for the calibration mixer/filter pair is called vector mixer calibration.
To obtain an S-parameter file of the calibration mixer/filter, you need to use SHORT, OPEN, and LOAD calibration standards (See figure 5.22).

![Figure 5.22 Vector Mixer Calibration](image)

5.7.1 Vector Mixer Calibration Procedure

Before you start the calibration, perform the following settings: activate a channel and set its parameters (frequency span, IF bandwidth, etc), and define the calibration kit.

- Perform 2-port calibration.
- Assemble vector calibration setup.
- Set frequency and power of the external LO.

To access the vector mixer calibration menu, use the following softkeys:

- **Calibration > Mixer/Converter Calibration > Vector Mixer Calibration**

To select the number of test port connected to the calibration mixer, click **Select Port**.
Enter the LO frequency, using **LO Frequency** softkey.

Select the frequency to be separated by the filter, using **IF Frequency** softkey:
- RF + LO
- RF – LO
- LO – RF

Connect SHORT, OPEN and LOAD standards to IF filter output as shown in figure 5.22. Perform the measurement using the respective standard softkey.

The instrument status bar will indicate **Calibration in progress**... when the measurement is in progress. On completion of the measurement, a check mark will appear in the left part of the softkey.

To complete the calibration procedure, click **Save To Touchstone File**.

This will activate calculation of the calibration mixer/filter pair S-parameters, and saving those into a Touchstone file. Enter the file name in the pop-up dialog.

If **Setup Option** feature is enabled, S-parameter file will be passed to the de-embedding function and this function will be activated.

Note
You can check the calibration status in channel status bar (See table 5.5) – **F2** and **Dmb** labels (2-port calibration and de-embedding function).
6 MEASUREMENT DATA ANALYSIS

6.1 Markers

A marker is a tool for numerical readout of a stimulus value and value of the measured parameter in a specific point on the trace. You can activate up to 16 markers on each trace. See a trace with two markers in figure 6.1.

The markers allow the user to perform the following tasks:

- Reading absolute values of a stimulus and a measured parameter in selected points on the trace;
- Reading relative values of a stimulus and a measured parameter related to the reference point;
- Search for specific points on the trace (minimum, maximum, target level, etc);
- Determining trace parameters (statistics, bandwidth, etc);
- Editing stimulus parameters using markers.

Figure 6.1

Markers can have the following indicators:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>symbol and number of the active marker on a trace,</td>
</tr>
<tr>
<td>▶</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>symbol and number of the inactive marker on a trace,</td>
</tr>
<tr>
<td>△</td>
<td></td>
</tr>
<tr>
<td>▲</td>
<td>symbol of the active marker on a stimulus axis,</td>
</tr>
<tr>
<td>△</td>
<td>symbol of the inactive marker on a stimulus axis.</td>
</tr>
</tbody>
</table>

The marker data field contains the marker number, stimulus value, and the measured parameter value. The number of the active marker is highlighted in inverse color.
The marker data field contents vary depending on the display format (rectangular or circular).

- In rectangular format, the marker shows the measurement parameter value plotted along Y-axis in the active format (See table 4.8).
- In circular format, the marker shows two or three values listed in table 6.1

Table 6.1 Marker readings in circular formats

<table>
<thead>
<tr>
<th>Label</th>
<th>Marker Readings (Measurement Unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reading 1</td>
</tr>
<tr>
<td>Smith (Lin)</td>
<td>Linear magnitude</td>
</tr>
<tr>
<td>Smith (Log)</td>
<td>Logarithmic magnitude (dB)</td>
</tr>
<tr>
<td>Smith (Re/Im)</td>
<td>Real part</td>
</tr>
<tr>
<td>Smith (R + jX)</td>
<td>Resistance (Ω)</td>
</tr>
<tr>
<td>Smith (G + jB)</td>
<td>Conductance (S)</td>
</tr>
<tr>
<td>Polar (Lin)</td>
<td>Linear magnitude</td>
</tr>
<tr>
<td>Polar (Log)</td>
<td>Logarithmic magnitude (dB)</td>
</tr>
<tr>
<td>Polar (Re/Im)</td>
<td>Real part</td>
</tr>
</tbody>
</table>
6.1.1 Marker Adding

To enable a new marker, use the following softkeys:

Markers > Add Marker

Note

The new marker appears as the active marker in the middle of the stimulus axis. The marker stimulus value entry field activates.

6.1.2 Marker Deleting

To delete a marker, use the following softkeys:

Markers > Delete Marker

To delete all the markers, use the following softkeys:

Markers > Delete All Markers

6.1.3 Marker Stimulus Value Setting

Before you set the marker stimulus value, you need to select the active marker. You can set the stimulus value by entering the numerical value from the keyboard, by arrows, or by dragging the marker using the mouse, or enabling the search function. Drag-and-drop operation is described in section 4.3.12. Marker search function is described in section 6.1.7.

To set the marker stimulus value, use the following softkeys:

Markers > Edit Stimulus

or make a mouse click on the stimulus value field.

Then enter the value using the numerical keys on the keypad, by «↑», «↓» arrows.
6.1.4 Marker Activating

To activate a marker by its number, use the following softkeys:

Markers > Select > Marker n

To activate a marker from the list of markers, use the following softkeys:

Markers > Select Next

Note: You can activate a marker by making a mouse click on it.
6.1.5 Reference Marker Feature

Reference marker feature allows the user to view the data relative to the reference marker. Other marker readings are represented as delta relative to the reference marker. The reference marker shows the absolute data. The reference marker is indicated with Δ symbol instead of a number (See figure 6.2). Enabling of a reference marker turns all the other markers to relative display mode.

![Figure 6.2](image)

Reference marker can be indicated on the trace as follows:

<table>
<thead>
<tr>
<th>R ∇</th>
<th>symbol of the active reference marker on a trace;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ R</td>
<td>symbol of the inactive reference marker on a trace.</td>
</tr>
</tbody>
</table>

The reference marker displays the stimulus and measurement absolute values. All the rest of the markers display the relative values:

- stimulus value — difference between the absolute stimulus values of this marker and the reference marker;
- measured value — difference between the absolute measurement values of this marker and the reference marker.

To enable/disable the reference marker, use the following softkeys:

Markers > Reference Marker
6.1.6 Marker Properties

6.1.6.1 Marker Coupling Feature

The marker coupling feature enables/disables dependence of the markers of the same numbers on different traces. If the feature is turned on, the coupled markers (markers with same numbers) will move along X-axis synchronously on all the traces. If the coupling feature is off, the position of the markers with same numbers along X-axis will be independent (See figure 6.3).

![Coupling: On](image1)
![Coupling: Off](image2)

Figure 6.3 Marker coupling feature

To enable/disable the marker coupling feature, use the following softkeys:

Markers > Properties > Marker Couple
6.1.6.2 Marker Table

The marker table enables you to view the values of the markers of all the traces and all the channels (See figure 6.4).

![Figure 6.4 Marker table](image-url)

To show/hide the marker table, use the following softkeys:

Markers > Properties > Marker Table
6.1.6.3 Marker Value Indication Capacity

By default, the marker stimulus values are displayed with 8 decimal digits and marker response values are displayed with 5 decimal digits. The user can change these settings.

To set the marker value indication capacity, use the following softkeys:

- Markers > Properties > Stimulus Digits
- Markers > Properties > Response Digits

6.1.6.4 Multi Marker Data Display

If several overlapping traces are displayed in one graph, by default only active marker data are displayed on the screen. The user can enable display of the marker data of all the traces simultaneously. The markers of different traces will be distinguished by the color. Each marker will have same color with its trace.

To enable/disable the multi marker data display, toggle the softkey:

- Markers > Marker Properties > Active Only

Note

When multi marker data display is enabled, to avoid data overlapping on the screen, arrange the marker data on the screen (See section 6.1.6.5).
6.1.6.5 Marker Data Arranging

By default, the marker data are displayed in the upper left corner of the screen. The user can rearrange the marker data display on the screen. The marker data position on the screen is described by two parameters: relative position on the X and Y axes, in percent. Zero percent is upper left corner, 100% is lower right corner. Marker data position for each trace is set separately. This allows the user to avoid data overlapping on the screen.

To arrange the marker data on the screen, enter the relative position on the X and Y axes, using the following softkeys:

- Markers > Marker Properties > Data X Position
- Markers > Marker Properties > Data Y Position

Note: You can also drag-and-drop the marker data by the mouse.

6.1.6.6 Marker Data Alignment

By default, the marker data are displayed independently for each trace. The user can align the marker data display on the screen. The alignment deactivates the independent marker data layout. In this case, the relative position on the X and Y axes is valid only for the first trace. The marker data of the other traces become aligned relatively to the first trace. Two types of alignment are available:

- Vertical – marker data of different traces are displayed one under another;
- Horizontal – marker data of different traces are displayed in line.

To set the marker data alignment, use the following softkeys:

- Markers > Marker Properties > Align > Vertical | Horizontal | OFF
6.1.6.7 Memory Trace Value Display

By default, the marker values of the data traces (not memory traces) are displayed on the screen. The user can enable the display of memory trace maker values, if a memory trace is available.

To enable/disable the display of memory trace marker values, toggle the softkey:

Marker > Maker Properties > Memory Value

6.1.7 Marker Position Search Functions

Marker position search function enables you to find on a trace the following values:

- maximum value;
- minimum value;
- peak value;
- target level.

6.1.7.1 Search for Maximum and Minimum

Maximum and minimum search functions enable you to determine the maximum and minimum values of the measured parameter and move the marker to these positions on the trace (See figure 6.5).

![Figure 6.5 Maximum and minimum search](image)

Figure 6.5 Maximum and minimum search
To find the maximum or minimum values on a trace, use the following softkeys:

- Markers > Marker Search > Maximum
- Markers > Marker Search > Minimum

Note

Before you start maximum or minimum search, first activate the marker.

In Smith chart and polar formats the search is executed for the first value of the marker.

6.1.7.2 Search for Peak

Peak search function enables you to determine the peak value of the measured parameter and move the marker to this position on the trace (See figure 6.6).

Peak is a local extremum of the trace.

Peak is called **positive** if the value in the peak is greater than the values of the adjacent points.

Peak is called **negative** if the value in the peak is smaller than the values of the adjacent points.

Peak excursion is the smallest of the absolute differences between the response values in the peak point and the two adjoining peaks of the opposite polarity.

![Figure 6.6 Positive and negative peaks](image)

The peak search is executed only for the peaks meeting the following conditions:
The peaks must have the polarity (positive, negative, or both) specified by the user;

The peaks must have the peak deviation not less than the value assigned by the user.

The following options of the peak search are available:

- Search for nearest peak;
- Search for greatest peak;
- Search for left peak;
- Search for right peak.

The nearest peak is a peak, which is located most near to the current position of the marker along the stimulus axis.

The greatest peak is a peak with maximum or minimum value, depending on the current polarity settings of the peak.

<table>
<thead>
<tr>
<th>Note</th>
<th>The search for the greatest peak is different from the search for maximum or minimum as the peak cannot be located in the limiting points of the trace even if these points have maximum or minimum values.</th>
</tr>
</thead>
<tbody>
<tr>
<td>To set the polarity of the peak, use the following softkeys:</td>
<td></td>
</tr>
</tbody>
</table>

```
Markers > Marker Search > Peak > Peak Polarity > Positive | Negative | Both
```

| To enter the peak excursion value, use the following softkeys: |

```
Markers > Marker Search > Peak > Peak Excursion
```

Then enter the value using numerical keypad, or «↑», «↓» arrows.

| To activate the nearest peak search, use the following softkeys: |

```
Markers > Marker Search > Peak > Search Peak
```
To activate the greatest peak search, use the following softkeys:

Markers > Marker Search > Peak > Search Max Peak

To activate the left peak search, use the following softkeys:

Markers > Marker Search > Peak > Search Peak Left

To activate the left peak search, use the following softkeys:

Markers > Marker Search > Peak > Search Peak Right

Note

Before you start maximum or minimum search, first activate the marker.

In Smith chart and polar formats the search is executed for the first value of the marker.

6.1.7.3 Search for Target Level

Target level search function enables you to locate the marker with the given level of the measured parameter (See figure 6.7).

The trace can have two types of transition in the points where the target level crosses the trace:

- transition type is positive if the function derivative (trace slope) is positive at the intersection point with the target level;

- transition type is negative if the function derivative (trace slope) is negative at the intersection point with the target level.

![Figure 6.7 Target level search](image)

Figure 6.7 Target level search
The target level search is executed only for the intersection points, which have the specific transition polarity selected by the user (positive, negative, or both).

The following options of the target level search are available:

- Search for nearest target;
- Search for left target;
- Search for right target.

To set the transition polarity, use the following softkeys:

```
Markers > Marker Search > Target > Target Transition > Positive | Negative | Both
```

To enter the target level value, use the following softkeys:

```
Markers > Marker Search > Target > Target Value
```

Then enter the value using numerical keypad, or «↑», «↓» arrows.

To activate the nearest target search, use the following softkeys:

```
Markers > Marker Search > Target > Search Target
```

To activate the left target search, use the following softkeys:

```
Markers > Marker Search > Target > Search Target Left
```

To activate the right target search, use the following softkeys:

```
Markers > Marker Search > Target > Search Target Right
```

To enable/disable target level indication on the screen, use the following softkeys:

```
Markers > Marker Search > Target > Target Line
```

Clear All Target Lines softkey disables indication of target level lines of all the markers.
Note
Before you start maximum or minimum search, first activate the marker.

In Smith chart and polar formats the search is executed for the first value of the marker.

6.1.7.4 Search Tracking

The marker position search function by default can be initiated by any search key pressing. Search tracking mode allows you to perform continuous marker position search, until this mode is disabled.

To enable/disable search tracking mode, use the following softkeys:
Markers > Marker Search > Tracking

6.1.7.5 Search Range

The user can set the search range for the marker position search by setting the stimulus limits. This function involves the following additional features:

- search range coupling, which allows the user to define the same search range for all the traces of a channel;
- vertical line indication of the search range limits.

To enable/disable the search range, use the following softkeys:
Markers > Marker Search > Search Range

To set the search range limits, use the following softkeys:
Markers > Marker Search > Search Start
Markers > Marker Search > Search Stop

To enable/disable search range coupling, use the following softkeys:
Markers > Marker Search > Couple
To enable/disable search range limits indication, use the following softkeys:

Markers > Marker Search > Search Range Lines

6.1.8 Marker Math Functions

Marker math functions are the functions, which use markers for calculating of various trace characteristics. Four marker math functions are available:

- Statistics;
- Bandwidth Search;
- Flatness;
- RF Filter.

6.1.8.1 Trace Statistics

The *trace statistics* feature allows the user to determine and view such trace parameters as mean, standard deviation, and peak-to-peak. The trace statistics range can be defined by two markers (See figure 6.8).

Table 6.2 Statistics parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>Arithmetic mean</td>
<td>$M = \frac{1}{N} \cdot \sum_{i=1}^{N} x_i$</td>
</tr>
<tr>
<td>s.dev</td>
<td>Standard deviation</td>
<td>$\sqrt{\frac{1}{N-1} \cdot \sum_{i=1}^{N} (x_i - M)^2}$</td>
</tr>
<tr>
<td>p-p</td>
<td>Peak-to-Peak: difference between the maximum and minimum values</td>
<td>Max – Min</td>
</tr>
</tbody>
</table>
To enable/disable trace statistics function, use the following softkeys:

Markers > Marker Math > Statistics > Statistics

To enable/disable trace statistics range, use the following softkeys:

Markers > Marker Math > Statistics > Statistic Range

To set the start/stop markers of the statistics range, use the following softkeys:

Markers > Marker Math > Statistics > Statistic Start

Markers > Marker Math > Statistics > Statistic Stop
6.1.8.2 Bandwidth Search

The bandwidth search function allows the user to determine and view the following parameters of a passband or a stopband: bandwidth, center frequency, lower frequency, higher frequency, Q value, and insertion loss (See figure 6.9). In the figure, F1 and F2 are the lower and higher cutoff frequencies of the band respectively.

The bandwidth search is executed from the reference point. The user can select as reference point the active marker or the maximum of the trace. The bandwidth search function determines the lower and higher cutoff frequencies, which are apart from the reference point response by bandwidth value defined by the user (usually –3 dB).

![Bandwidth search diagram](image)

Figure 6.9 Bandwidth search
Table 6.3 Bandwidth parameters

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Symbol</th>
<th>Definition</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>BW</td>
<td>The difference between the higher and lower cutoff frequencies</td>
<td>F₂ – F₁</td>
</tr>
<tr>
<td>Center Frequency</td>
<td>cent</td>
<td>The midpoint between the higher and lower cutoff frequencies</td>
<td>(F₁+F₂)/2</td>
</tr>
<tr>
<td>Lower Cutoff Frequency</td>
<td>low</td>
<td>The lower frequency point of the intersection of the bandwidth cutoff level and the trace</td>
<td>F₁</td>
</tr>
<tr>
<td>Higher Cutoff Frequency</td>
<td>high</td>
<td>The higher frequency point of the intersection of the bandwidth cutoff level and the trace</td>
<td>F₂</td>
</tr>
<tr>
<td>Quality Factor</td>
<td>Q</td>
<td>The ratio of the center frequency to the bandwidth</td>
<td>Cent/BW</td>
</tr>
<tr>
<td>Loss</td>
<td>loss</td>
<td>The trace measured value in the reference point of the bandwidth search</td>
<td>-</td>
</tr>
</tbody>
</table>

To enable/disable bandwidth search function, use the following softkeys:

Markers > Marker Math > Bandwidth Search > Bandwidth Search

Set the bandwidth search type by softkeys:

Markers > Marker Math > Bandwidth Search > Type

The type and the softkey label toggle between **Bandpass** and **Notch** settings.

To set the search reference point, use the following softkeys:

Markers > Marker Math > Bandwidth Search > Search Ref To

The type and the softkey label toggle between **Max** and **Marker** settings.

To enter the bandwidth value, use the following softkeys:

Markers > Marker Math > Bandwidth Search > Bandwidth Value
6.1.8.3 Flatness

The flatness search function allows the user to determine and view the following trace parameters: gain, slope, and flatness. The user sets two markers to specify the flatness search range (See figure 6.10).

![Figure 6.10 Flatness search](image)

Table 6.4 Flatness parameters

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>gain</td>
<td>Marker 1 value</td>
</tr>
<tr>
<td>Slope</td>
<td>slope</td>
<td>Difference between marker 2 and marker 1 values.</td>
</tr>
<tr>
<td>Flatness</td>
<td>flatness</td>
<td>Sum of “positive” and “negative” peaks of the trace, which are measured from the line connecting marker 1 and marker 2 (See figure 6.10).</td>
</tr>
</tbody>
</table>
To enable/disable the flatness search function, use the following softkeys:

Markers > Marker Math > Flatness > Flatness

To select the markers specifying the flatness search range, use softkeys:

Markers > Marker Math > Flatness > Flatness Start
Markers > Marker Math > Flatness > Flatness Stop

6.1.8.4 RF Filter Statistics

The *RF filter statistics* function allows the user to determine and view the following filter parameters: loss, peak-to-peak in a passband, and rejection in a stopband. The passband is specified by the first pair of markers, the stopband is specified by the second pair of markers (See figure 6.11).

![RF Filter Statistics Diagram](image)

Figure 6.11 RF filter statistics

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss in passband</td>
<td>loss</td>
<td>Minimum value in the passband</td>
</tr>
<tr>
<td>Peak-to-peak in passband</td>
<td>p-p</td>
<td>Difference between maximum and minimum in the passband</td>
</tr>
<tr>
<td>Reject</td>
<td>rej</td>
<td>Difference between maximum in stopband and minimum in passband</td>
</tr>
</tbody>
</table>
6 MEASUREMENT DATA ANALYSIS

To enable/disable the RF filter statistics function, use the following softkeys:

Markers > Marker Math > RF Filter Stats > RF Filter Stats

To select the markers specifying the passband, use the following softkeys:

Markers > Marker Math > RF Filter Stats > Passband Start
Markers > Marker Math > RF Filter Stats > Passband Stop

To select the markers specifying the stopband, use the following softkeys:

Markers > Marker Math > RF Filter Stats > Stopband Start
Markers > Marker Math > RF Filter Stats > Stopband Stop

6.1.9 Marker Functions

Using the current position of a marker you can perform settings of the following parameters:

- Stimulus start;
- Stimulus stop;
- Stimulus center;
- Reference level;
- Electrical delay.

Before performing the settings, first activate the marker.

To set the stimulus start, use the following softkeys:

Markers > Marker Functions > Marker->Start

To set the stimulus stop, use the following softkeys:

Markers > Marker Functions > Marker->Stop

To set the stimulus center, use the following softkeys:

Markers > Marker Functions > Marker->Center
To set the reference level, use the following softkeys:

Markers > Marker Functions > Marker→Ref Value

To set the electrical delay, use the following softkeys:

Markers > Marker Functions > Marker→Delay

To set reference marker to the active marker point, use the following softkeys:

Markers > Marker Functions > Marker→Ref Marker
6.2 Memory Trace Function

For each data trace displayed on the screen a so-called memory trace can be created. The memory trace is displayed in the same color as the main data trace, but its brightness is twice lower\(^1\).

The data trace shows the currently measured data and is continuously being updated as the measurement goes on.

The memory trace is a data trace saved into the memory. It is created from the current measurement when the user is clicking the corresponding softkey. After that, the two traces become displayed on the screen – the data trace and the memory trace. The user can customize the trace indication. The trace status field will indicate the following:

- **D&M** – data trace and memory trace are displayed;
- **M** – only memory trace is displayed;
- **OFF** – both traces are not displayed
- *Empty field* – only data trace is displayed.

The memory trace bears the following features of the data trace (which if changed, will **clear** the memory):

- frequency range,
- number of points,
- sweep type.

The memory trace has the following settings common with the data trace (which if changed, modifies the both traces):

- format,
- scale,
- smoothing,
- electrical delay.

The following data trace settings (if changed after the memory trace creation) do not influence the memory trace:

- power in frequency sweep mode,
- frequency in power sweep mode,
- measured parameter (S-parameter),
- IF bandwidth,
- averaging,
- calibration.

\(^1\) The color and brightness of the data and memory traces can be customized by the user (See section 8.6).
The memory trace can be used for math operations with the data trace. The resulting trace of such an operation will replace the data trace. The math operations with memory and data traces are performed in complex values. The following four math operations are available:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data / Memory</td>
<td>Divides the measured data by the data in the memory trace. The trace status field indicates: D/M.</td>
</tr>
<tr>
<td>Data * Memory</td>
<td>Multiplies the measured data by the memory trace. The trace status field indicates: D*M.</td>
</tr>
<tr>
<td>Data – Memory</td>
<td>Subtracts a memory trace from the measured data. The trace status field indicates: D–M.</td>
</tr>
<tr>
<td>Data + Memory</td>
<td>Adds the measured data to the data in the memory trace. The trace status field indicates: D+M.</td>
</tr>
</tbody>
</table>

6.2.1 Saving Trace into Memory

The memory trace function can be applied to the individual traces of the channel. Before you enable this function, first activate the trace.

To save a trace into the memory, use the following softkeys:

Display > Data->Memory

6.2.2 Trace Display Setting

To set the type of data to be displayed on the screen, use the following softkeys:

Display > Display >

Data | Memory | Data & Memory | OFF
6.2.3 Mathematical Operations

To access math operations, use the following softkeys:

- **Display > Data Math**
 - Data/Mem | Data * Mem | Data – Mem | Data + Mem | OFF
6.3 Fixture Simulation

The fixture simulation function enables you to emulate the measurement conditions other than those of the real setup. The following conditions can be simulated:

- Port Z conversion;
- De-embedding;
- Embedding.

Before starting the fixture simulation, first activate the channel. The simulation function will affect all the traces of the channel.

To open the fixture simulation menu, use the following softkeys:

Analysis > Fixture Simulator

Note

The Fixture Simulator softkey label indicates the following:

ON – at least one of the fixture simulation functions is enabled,

OFF – all fixture simulation functions are disabled.

6.3.1 Port Z Conversion

Port Z conversion is a function of transformation of the S-parameters measured during port wave impedance change simulation (See figure 6.12).

Note

The value of the test port impedance is defined in the process of calibration. It is determined by the characteristic impedance of the calibration kit and the value is entered by the user as described in section 5.2.12.
To enable/disable the port impedance conversion function, toggle **Port Z Conversion** softkey.

To enter the value of the simulated impedance of Port 1, use **Port 1 Z0** softkey.

To enter the value of the simulated impedance of Port 2, use **Port 2 Z0** softkey.

6.3.2 De-embedding

De-embedding is a function of the S-parameter transformation by removing of some circuit effect from the measurement results.
The circuit being removed should be defined in the data file containing S-parameters of this circuit. The circuit should be described as a 2-port in Touchstone file (extension .s2p), which contains the S-parameter table: S_{11}, S_{21}, S_{12}, S_{22} for a number of frequencies.

The de-embedding function allows to mathematically exclude from the measurement results the effect of the fixture circuit existing between the calibration plane and the DUT in the real network. The fixture is used for the DUTs, which cannot be directly connected to the test ports.

The de-embedding function shifts the calibration plane closer to the DUT, so as if the calibration has been executed of the network with this circuit removed (See figure 6.13).

![Figure 6.13 De-embedding](image-url)
To enable/disable the de-embedding function for port 1, use the following softkeys:

Analysis > Fixture Simulator > De-Embedding > Port 1.

To enter the file name of the de-embedded circuit S-parameters of port 1, use the following softkeys:

Analysis > Fixture Simulator > De-Embedding > S-parameters File

To enable/disable the de-embedding function for port 2, use the following softkeys:

Analysis > Fixture Simulator > De-Embedding > Port 2.

To enter the file name of the de-embedded circuit S-parameters of port 2, use the following softkeys:

Analysis > Fixture Simulator > De-Embedding > S-parameters File

Note
If S-parameters file is not specified, the softkey of the function activation will be grayed out.

6.3.3 Embedding

Embedding is a function of the S-parameter transformation by integration of some virtual circuit into the real network (See figure 6.14). The embedding function is an inverted de-embedding function.

The circuit being integrated should be defined in the data file containing S-parameters of this circuit. The circuit should be described as a 2-port in Touchstone file (extension .s2p), which contains the S-parameter table: S11, S21, S12, S22 for a number of frequencies.

The embedding function allows to mathematically simulate the DUT parameters after adding of the fixture circuits.
To enable/disable the embedding function for port 1, use the following softkeys:

Analysis > Fixture Simulator > Embedding > Port 1.

To enter the file name of the embedded circuit S-parameters of port 1, use the following softkeys:

Analysis > Fixture Simulator > Embedding > S-parameters File
To enable/disable the embedding function for port 2, use the following softkeys:

Analysis > Fixture Simulator > Embedding > Port 2.

To enter the file name of the embedded circuit S-parameters of port 2, use the following softkeys:

Analysis > Fixture Simulator > Embedding > S-parameters File

Note

If S-parameters file is not specified, the softkey of the function activation will be grayed out.
6.4 Time Domain Transformation

The Analyzer measures and displays parameters of the DUT in frequency domain. Time domain transformation is a function of mathematical modification of the measured parameters in order to obtain the time domain representation.

For time domain transformation Z-transformation and frequency domain window function are applied.

The time domain transformation can be activated for separate traces of a channel. The current frequency parameters (S₁₁, S₂₁, S₁₂, S₂₂) of the trace will be transformed into the time domain.

| Note | Traces in frequency and time domains can simultaneously belong to one channel. The stimulus axis label will be displayed for the active trace, in frequency or time units. |

The transformation function allows for setting of the measurement range in time domain within Z-transformation ambiguity range. The ambiguity range is determined by the measurement step in the frequency domain:

\[\Delta T = \frac{1}{\Delta F}; \quad \Delta F = \frac{F_{\text{max}} - F_{\text{min}}}{N - 1} \]

The time domain function allows selecting the following transformation types:

- **Bandpass mode** simulates the impulse bandpass response. It allows the user to obtain the response for circuits incapable of direct current passing. The frequency range is arbitrary in this mode. The time domain resolution in this mode is twice lower than it is in the lowpass mode;

- **Lowpass mode** simulates lowpass impulse and lowpass step responses. It is applied to the circuits passing direct current, and the direct component (in point F=0 Hz) is interpolated from the start frequency (Fmin) of the range. In this mode the frequency range represents a harmonic grid where the frequency value at each frequency point is an integer multiple of the start frequency of the range Fmin. The time domain resolution is twice higher than it is in the bandpass mode.

The time domain transformation function applies Kaiser window for initial data processing in frequency domain. The window function allows to reduce the ringing (side lobes) in the time domain. The ringing is caused by the abrupt change of the data at the limits of the frequency domain. But while side lobes are reduced, the main pulse or front edge of the lowpass step becomes wider.

The Kaiser window is described by \(\beta \) parameter, which smoothly fine-tunes the window shape from minimum (rectangular) to maximum. The user can fine-tune the window shape or select one of the three preprogrammed windows:
- Minimum (rectangular);
- Normal;
- Maximum.

Table 6.6 Preprogrammed window types

<table>
<thead>
<tr>
<th>Window</th>
<th>Lowpass Impulse</th>
<th>Lowpass Step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Side Lobes Level</td>
<td>Pulse Width</td>
</tr>
<tr>
<td>Minimum</td>
<td>– 13 dB</td>
<td>0.6 $\frac{F_{max} - F_{min}}{F_{max} - F_{min}}$</td>
</tr>
<tr>
<td>Normal</td>
<td>– 44 dB</td>
<td>0.98 $\frac{F_{max} - F_{min}}{F_{max} - F_{min}}$</td>
</tr>
<tr>
<td>Maximum</td>
<td>– 75 dB</td>
<td>1.39 $\frac{F_{max} - F_{min}}{F_{max} - F_{min}}$</td>
</tr>
</tbody>
</table>

6.4.1 Time Domain Transformation Activating

To enable/disable time domain transformation function, use the following softkeys:

Analysis > Time Domain > Time Domain

Note

Time domain transformation function is accessible only in linear frequency sweep mode.

6.4.2 Time Domain Transformation Span

To define the span of time domain representation, you can set its start and stop, or center and span values.

To set the start and stop limits of the time domain range, use the following softkeys:

Analysis > Time Domain > Start
Analysis > Time Domain > Stop
To set the center and span of the time domain, use the following softkeys:

Analysis > Time Domain > Center

Analysis > Time Domain > Span

6.4.3 Time Domain Transformation Type

To set the time domain transformation type, use the following softkeys:

Analysis > Time Domain > Type

Bandpass | Lowpass Impulse | Lowpass Step

6.4.4 Time Domain Transformation Window Shape Setting

To set the window shape, use the following softkeys:

Analysis > Time Domain > Window

Minimum | Normal | Maximum

To set the window shape for the specific impulse width or front edge width, use the following softkeys:

Analysis > Time Domain > Window > Impulse Width

The setting values are limited by the specified frequency range. The bottom limit corresponds to the value implemented in the minimum (rectangular) window. The top limit corresponds to the value implemented in the maximum window.
To set the window shape for the specific β-parameter of the Kaiser-Bessel filter, use the following softkeys:

Analysis > Time Domain > Window > Kaiser Beta

The available β values are from 0 to 13. 0 corresponds to minimum window, 6 corresponds to normal window, 13 corresponds to maximum widow.

| Note | The impulse width and β of the Kaiser-Bessel filter are the dependent parameters. When you set one of the parameters the other one will be adjusted automatically. |

6.4.5 Frequency Harmonic Grid Setting

If lowpass impulse or lowpass step transformation is enabled, the frequency range will be represented as a harmonic grid. The frequency values in measurement points are integer multiples of the start frequency F_{min}. The Analyzer is capable of creating a harmonic grid for the current frequency range automatically.

To create a harmonic grid for the current frequency range, use the following softkeys:

Analysis > Time Domain > Set Frequency Low Pass

<table>
<thead>
<tr>
<th>Note</th>
<th>The frequency range will be transformed as follows:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_{\text{max}} > N \times 0.3 \text{ MHz}$</td>
<td>$F_{\text{max}} < N \times 0.3 \text{ MHz}$</td>
</tr>
<tr>
<td>$F_{\text{min}} = F_{\text{max}} / N$</td>
<td>$F_{\text{min}} = 0.3 \text{ MHz}$, $F_{\text{max}} = N \times 0.3 \text{ MHz}$</td>
</tr>
</tbody>
</table>
6.5 Time Domain Gating

Time domain gating is a function, which mathematically removes the unwanted responses in time domain. The function performs time domain transformation and applies reverse transformation back to frequency domain to the user-defined span in time domain. The function allows the user to remove spurious effects of the fixture devices from the frequency response, if the useful signal and spurious signal are separable in time domain.

Note

Use *time domain* function for viewing the layout of useful and spurious responses. Then enable *time domain gating* and set the gate span to remove as much of spurious response as possible. After that disable the time domain function and view the response without spurious effects in frequency domain.

The function involves two types of time domain gating:

- *bandpass* – removes the response outside the gate span,
- *notch* – removes the response inside the gate span.

The rectangular window shape in frequency domain leads to spurious sidelobes due to sharp signal changes at the limits of the window. The following gate shapes are offered to reduce the sidelobes:

- *maximum*;
- *wide*;
- *normal*;
- *minimum*.

The minimum window has the shape close to rectangular. The maximum window has more smoothed shape. From minimum to maximum window shape, the sidelobe level increases and the gate resolution reduces. The choice of the window shape is always a trade-off between the gate resolution and the level of spurious sidelobes. The parameters of different window shapes are represented in table 6.7.
Table 6.7 Time domain gating window shapes

<table>
<thead>
<tr>
<th>Window Shape</th>
<th>Bandpass Sidelobe Level</th>
<th>Gate Resolution (Minimum Gate Span)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>− 48 dB</td>
<td>(\frac{2.8}{F_{\text{max}} - F_{\text{min}}})</td>
</tr>
<tr>
<td>Normal</td>
<td>− 68 dB</td>
<td>(\frac{5.6}{F_{\text{max}} - F_{\text{min}}})</td>
</tr>
<tr>
<td>Wide</td>
<td>− 57 dB</td>
<td>(\frac{8.8}{F_{\text{max}} - F_{\text{min}}})</td>
</tr>
<tr>
<td>Maximum</td>
<td>− 70 dB</td>
<td>(\frac{25.4}{F_{\text{max}} - F_{\text{min}}})</td>
</tr>
</tbody>
</table>

6.5.1 Time Domain Gate Activating

To enable/disable the time domain gating function: toggle the following softkey:

Analysis > Gating > Gating

Note

Time domain gating function is accessible only in linear frequency sweep mode.

6.5.2 Time Domain Gate Span

To define the span of time domain gate, you can set its start and stop, or center and span values.

To the start and stop of the time domain gate, use the following softkeys:

Analysis > Gating > Start
Analysis > Gating > Stop

To set the center and span of the time domain gate, use the following softkeys:

Analysis > Gating > Center
Analysis > Gating > Span
6.5.3 Time Domain Gate Type

To select the type of the time domain window, use the following softkeys:

Analysis > Gating > Type

Toggle the type between **Bandpass** and **Notch**.

6.5.4 Time Domain Gate Shape Setting

To set the time domain gate shape, use the following softkeys:

Analysis > Gating > Shape >

Minimum | Normal | Wide | Maximum
6.6 S-Parameter Conversion

S-parameter conversion function allows conversion of the measurement results \((S_{ab})\) to the following parameters:

- **Equivalent impedance \((Z_r)\) and equivalent admittance \((Y_r)\) in reflection measurement:**
 \[
 Z_r = Z_{0a} \cdot \frac{1 + S_{ab}}{1 - S_{ab}} \\
 Y_r = \frac{1}{Z_r}
 \]

- **Equivalent impedance \((Z_t)\) and equivalent admittance \((Y_r)\) in transmission measurement:**
 \[
 Z_t = \frac{2 \cdot \sqrt{Z_{0a} \cdot Z_{0b}}}{S_{ab}} - (Z_{0a} + Z_{0b}) \\
 Y_t = \frac{1}{Z_t}
 \]

- **Inverse S-parameter:**
 \[
 \left(\frac{1}{S_{ab}} \right)
 \]

- **Equivalent impedance \((Z_{tsh})\) and equivalent admittance \((Y_{tsh})\) in transmission shunt measurements:**
 \[
 Z_{tsh} = \frac{1}{Y_{tsh}} \\
 Y_{tsh} = \frac{2 \cdot \sqrt{Y_{0a} \cdot Y_{0b}}}{Y_{ab}} - (Y_{0a} + Y_{0b}) \\
 Y_{0a} = \frac{1}{Z_{0a}}, \quad Y_{0b} = \frac{1}{Z_{0b}}
 \]

- **S-parameter complex conjugate.**

Where:

- \(Z_{0a}\) – characteristic impedance of Port a,
- \(Z_{0b}\) – characteristic impedance of Port b,
- \(Z_{ab}\) – measured S-parameter (a and b are the port numbers).
S-parameter conversion function can be applied to an individual trace of a channel. Before enabling the function, first activate the trace.

To enable/disable the conversion, use the following softkeys:

Analysis > Conversion > Conversion

To select the conversion type, use the following softkeys:

Analysis > Conversion > Function >

- Zr: Reflection |
- Zt: Transmission |
- Yr: Reflection |
- Yt: Transmission |
- 1/S: Inverse |
- Ztsh: Trans-Shunt |
- Ytsh: Trans-Shunt |
- Conjugation

Note: All conversion types are indicated in the trace status field, if enabled.
6.7 Limit Test

The limit test is a function of automatic pass/fail judgment for the trace of the measurement result. The judgment is based on the comparison of the trace to the limit line set by the user.

The limit line can consist of one or several segments (See figure 6.15). Each segment checks the measurement value for failing whether upper or lower limit. The limit line segment is defined by specifying the coordinates of the beginning \((X_0, Y_0)\) and the end \((X_1, Y_1)\) of the segment, and type of the limit. The MAX or MIN limit types check if the trace falls outside of the upper or lower limit respectively.

The limit line is set by the user in the limit table. Each row in the table describes one segment of the line. Limit table editing is described below. The table can be saved into a *.lim file.

The display of the limit lines on the screen can be turned on/off independently of the status of the limit test function.

The result of the limit test is indicated in the upper right corner of the graph. If the measurement result passed the limit test, you will see the trace number and the result: Tr1: Pass.

If the measurement result failed, the result will be indicated in the following ways (See figure 6.16):

- **Tr1: Fail** will be displayed in upper right corner of the graph;
- **Fail** sign will be displayed in red in the center of the window;
- The points of the trace, which failed the test will be highlighted in red;
- You will hear a beep.

Fail sign and the beep can be disabled by the user. For beep deactivation see section 8.5.
6.7.1 Limit Line Editing

To access the limit line editing mode, use the following softkeys:

Analysis > Limit Test > Edit Limit Line

In the editing mode the limit table will appear in the lower part of the screen (See figure 6.17). The limit table will be hidden when you quit the submenu.

<table>
<thead>
<tr>
<th>Type</th>
<th>Begin Stimulus</th>
<th>End Stimulus</th>
<th>Begin Response</th>
<th>End Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MAX</td>
<td>100 MHz</td>
<td>-100 dB</td>
<td>-90 dB</td>
</tr>
<tr>
<td>2</td>
<td>MIN</td>
<td>700 MHz</td>
<td>-6 dB</td>
<td>-6 dB</td>
</tr>
<tr>
<td>3</td>
<td>MAX</td>
<td>1.4 GHz</td>
<td>-90 dB</td>
<td>-100 dB</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2 GHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6.17 Limit line table

To add a new row in the table, click **Add**. The new row will appear below the highlighted one.

To delete a row from the table, click **Delete**. The highlighted row will be deleted.
To clear the entire table, use **Clear Limit Table** softkey.

To save the table into *.lim file, use **Save Limit Table** softkey.

To open the table from a *.lim file, use **Restore Limit Table** softkey.

Navigating in the table to enter the values of the following parameters of a limit test segment:

<table>
<thead>
<tr>
<th>Type</th>
<th>Select the segment type among the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>■ MAX – upper limit</td>
</tr>
<tr>
<td></td>
<td>■ MIN – lower limit</td>
</tr>
<tr>
<td></td>
<td>■ OFF — segment not used for the limit test</td>
</tr>
</tbody>
</table>

Begin Stimulus

Stimulus value in the beginning point of the segment.

End Stimulus

Stimulus value in the ending point of the segment.

Begin Response

Response value in the beginning point of the segment.

End Response

Response value in the ending point of the segment.

6.7.2 Limit Test Enabling/Disabling

To enable/disable limit test function, use the following softkeys:

Analysis > Limit Test > Limit Test

6.7.3 Limit Test Display Management

To enable/disable display of a *limit line*, use the following softkeys:

Analysis > Limit Test > Limit Line
To enable/disable display of *Fail* sign in the center of the graph, use *Fail Sign* softkey.

6.7.4 Limit Line Offset

Limit line offset function allows the user to shift the segments of the limit line by the specified value along X and Y axes simultaneously.

- **Stimulus Offset**: Analysis > Limit Test > Limit Line Offsets > Stimulus Offset

- **Response Offset**: Analysis > Limit Test > Limit Line Offsets > Response Offset

Response offset can be set to the active marker position, using the following softkeys:

Analysis > Limit Test > Limit Line Offsets > Marker – > Response Ofs
6.8 Ripple Limit Test

Ripple limit test is an automatic pass/fail check of the measured trace data. The trace is checked against the maximum ripple value (ripple limit) defined by the user. The ripple value is the difference between the maximum and minimum response of the trace in the trace frequency band.

The ripple limit can include one or more segments (See figure 6.18). Each segment provides the ripple limit for the specific frequency band. A segment is set by the frequency band and the ripple limit value.

![Figure 6.18 Ripple limits](image)

The ripple limit settings are performed in the ripple limit table. Each row of the table describes the frequency band the ripple limit value. The ripple limit table editing is described below. The table can be saved into a *.lim file.

The display of the limit lines on the screen can be turned on/off by the user.

The result of the ripple limit test is indicated in the upper right corner of the graph. If the measurement result passed the limit test, you will see the trace number and the result: **Ripl1: Pass**.

If the measurement result failed, the result will be indicated in the following ways (See figure 6.19):

- **Ripl1: Fail** will be displayed in upper right corner of the graph;
- **Fail** sign will be displayed in red in the center of the window;
- You will hear a beep.

Fail sign and the beep can be disabled by the user. For beep deactivation see section 8.5.
The display of the ripple value can be enabled/disabled by the user in the ripple limit test status line in the upper right corner of the graph (See figure 6.20). The ripple value is displayed for the band selected by the user. The ripple value can be represented as an absolute value or as a margin to the limit.

6.8.1 Ripple Limit Editing

To access the ripple limit editing mode, use the following softkeys:

Analysis > Ripple Limit > Edit Ripple Limit

In the editing mode the limit table will appear in the lower part of the screen (See figure 6.21). The limit table will be hidden when you quit the submenu.
<table>
<thead>
<tr>
<th>Type</th>
<th>Begin Stimulus</th>
<th>End Stimulus</th>
<th>Ripple Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ON</td>
<td>640 MHz</td>
<td>800 MHz</td>
<td>4 dB</td>
</tr>
<tr>
<td>2 ON</td>
<td>900 MHz</td>
<td>1.05 GHz</td>
<td>2 dB</td>
</tr>
<tr>
<td>3 ON</td>
<td>1.05 GHz</td>
<td>1.21 GHz</td>
<td>3 dB</td>
</tr>
</tbody>
</table>

Figure 6.21 Ripple limit table

- To add a new row in the table, click **Add**. The new row will appear below the highlighted one.

- To delete a row from the table, click **Delete**. The highlighted row will be deleted.

- To clear the entire table, use **Clear Ripple Limit Table** softkey.

- To save the table into *.rlm file, use **Save Ripple Limit Table** softkey.

- To open the table from a *.rlm file, use **Recall Ripple Limit Table** softkey.

Navigating in the table to enter the values of the following parameters of a ripple limit test segment:

- **Type**
 - Select the segment type among the following:
 - **ON** – band used for the ripple limit test
 - **OFF** — band not used for the limit test

- **Begin Stimulus**
 - Stimulus value in the beginning point of the segment.

- **End Stimulus**
 - Stimulus value in the ending point of the segment.

- **Ripple Limit**
 - Ripple limit value.
6.8.2 Ripple Limit Enabling/Disabling

To enable/disable ripple limit test function, use the following softkeys:

Analysis > Ripple Limit > Ripple Test

6.8.3 Ripple Limit Test Display Management

To enable/disable display of the *ripple limit line*, use the following softkeys:

Analysis > Ripple Limit > Ripple Limit

To enable/disable display of the *Fail* sign in the center of the graph, use the following softkeys:

Analysis > Ripple Limit > Fail Sign.

To enable/disable display of the ripple value, use the following softkeys:

Analysis > Ripple Limit > Ripple Value > OFF | Absolute | Margin

To enter the number of the band, whose ripple value should be displayed, use the following softkeys:

Analysis > Ripple Limit > Ripple Value Band
7 ANALYZER DATA OUTPUT

7.1 Analyzer State

The Analyzer state, calibration and measured data can be saved on the hard disk to an Analyzer state file and later uploaded back into the Analyzer program. The following four types of saving are available:

<table>
<thead>
<tr>
<th>State</th>
<th>The Analyzer settings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>State & Cal</td>
<td>The Analyzer settings and the table of calibration coefficients.</td>
</tr>
<tr>
<td>State & Trace</td>
<td>The Analyzer settings and data traces.</td>
</tr>
<tr>
<td>All</td>
<td>The Analyzer settings, table of calibration coefficients, and data traces.</td>
</tr>
</tbody>
</table>

The Analyzer settings that become saved into the Analyzer state file are the parameters, which can be set in the following submenus of the softkey menu:

- All the parameters in **Stimulus** submenu;
- All the parameters in **Measurement** submenu;
- All the parameters in **Format** submenu;
- All the parameters in **Scale** submenu;
- All the parameters in **Average** submenu;
- All the parameters in **Display** submenu except for **Properties**;
- All the parameters of **Markers** submenu;
- All the parameters of **Analysis** submenu;
- **Ref Source** and **System Correction** parameters in **System** submenu.

To save and recall a state file, you can use ten softkeys labeled **State01, ... State10**. Each of the softkeys correspond to a *.sta* file having the same name.

To have the Analyzer state automatically recalled after each start of the instrument use **Autorecall.sta** file. Use **Autorecall** softkey to save the corresponding file and thus enable this function.

1 When recalling the state with saved data traces, the trigger mode will be automatically set to «Hold», so that the recalled traces are not erased by the currently measured data.
To disable the automatic recall of the Analyzer state, delete the *Autorecall.sta* file using the specific softkey.

You can save and recall the files with arbitrary names. For this purpose use File... softkey, which will open the Save as dialog box.

7.1.1 Analyzer State Saving

To set the type of saving, use the following softkeys:

- **Save/Recall > Save Type >**
 - **State**
 - **State & Cal**
 - **State & Trace**
 - **All**

To save the state, use the following softkeys:

- **Save/Recall > Save State**

To save a state into one of the ten files, use **State01...State10** softkeys.

A check mark in the left part of the softkey indicates that the state with the corresponding number is already saved.

To save the state, which will be automatically recalled after each start of the Analyzer, use **Autorecall** softkey.

A check mark on the softkey indicates that such a state is already saved.

To save a state into the file with an arbitrary name use File... softkey.
7.1.2 Analyzer State Recalling

To recall the state from a file of Analyzer state, use the following softkeys:

- **Save/Recall > Recall State**

Click the required softkey of the available **State01…State10**.

If the state with some number was not saved the corresponding softkey will be grayed out.

You can select the state automatic recall file by clicking **Autorecall** softkey.

To recall a state from the file with an arbitrary name, use **File...** softkey.
7.2 Channel State

A channel state can be saved into the Analyzer memory. The channel state saving procedure is similar to saving of the Analyzer state saving, and the same saving types (described in section 7.1) are applied to the channel state saving.

Unlike the Analyzer state, the channel state is saved into the Analyzer inner volatile memory (not to the hard disk) and is cleared when the power to the Analyzer is turned off. For channel state storage, there are four memory registers A, B, C, D.

The channel state saving allows the user to easily copy the settings of one channel to another one.

7.2.1 Channel State Saving

To save the active channel state, use the following softkeys:

Save/Recall > Save Channel

To save a state into one of the four memory registers, use State A…State D softkeys.

A check mark in the left part of the softkey indicates that the state with the corresponding number is already saved.

7.2.2 Channel State Recalling

To recall the active channel state, use the following softkeys:

Save/Recall > Recall Channel

Click the required softkey of the available State A…State D.

If the state with some number was not saved the corresponding softkey will be grayed out.
7.3 Trace Data CSV File

The Analyzer allows the use to save an individual trace data as a CSV file (comma separated values). The *.CSV file contains digital data separated by commas. The active trace stimulus and response values in current format are saved to *.CSV file.

Only one (active) trace data are saved to the file.

The trace data are saved to *.CSV in the following format:

<table>
<thead>
<tr>
<th>F[0],</th>
<th>Data1,</th>
<th>Data2</th>
</tr>
</thead>
<tbody>
<tr>
<td>F[1],</td>
<td>Data1,</td>
<td>Data2</td>
</tr>
<tr>
<td>. . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F[N],</td>
<td>Data1,</td>
<td>Data2</td>
</tr>
</tbody>
</table>

F[n] – frequency at measurement point n;

Data1 – trace response in rectangular format, real part in Smith chart and polar format;

Data2 – zero in rectangular format, imaginary part in Smith chart and polar format.

7.3.1 CSV File Saving/Recalling

To save the trace data, first activate the trace.

To save the trace data, use the following softkeys:

Save/Recall > Save Trace Data

Enter the file name in the dialog that appears.
7.4 Trace Data Touchstone File

The Analyzer allows the user to save S-parameters to a Touchstone file. The Touchstone file contains the frequency values and S-parameters. The files of this format are typical for most of circuit simulator programs.

The *.s2p files are used for saving all the four S-parameters of a 2-port device.

The *.s1p files are used for saving S_{11} and S_{22} parameters of a 1-port device.

Only one (active) trace data are saved to the file.

| Note | If a channel does not have all the S-parameter traces, only available S-parameter responses will be represented. For example, if one S_{11} trace is enabled, S_{21} response will be represented, and S_{12} and S_{22} will not be represented. The missing S-parameters are displayed as zeroes in the file. If full 2-port calibration is active, all the four S-parameters in a channel are measured, independently of the number of the traces. |

The Touchstone file saving function is applied to individual channels. To use this function, first activate the channel.
The Touchstone file contains comments, header, and trace data lines. Comments start from «!» symbol. Header starts from «#» symbol.

The *.s1p Touchstone file for 1-port measurements:

```
! Comments
# Hz S FMT R Z0
F[0] {S11}' {S11}" 
F[1] {S11}' {S11}" 
   . . .
F[N] {S11}' {S11}" 
```

The *.s2p Touchstone file for 2-port measurements:

```
! Comments
# Hz S FMT R Z0
F[0] {S11}' {S11}" {S21}' {S21}" {S12}' {S12}" {S22}' {S22}" 
F[1] {S11}' {S11}" {S21}' {S21}" {S12}' {S12}" {S22}' {S22}" 
   . . .
F[N] {S11}' {S11}" {S21}' {S21}" {S12}' {S12}" {S22}' {S22}" 
```

Hz – frequency measurement units (kHz, MHz, GHz)

FMT – data format:

- RI – real and imaginary parts,
- MA – linear magnitude and phase in degrees,
- DB – logarithmic magnitude in dB and phase in degrees.

Z0 – reference impedance value

F[n] – frequency at measurement point n

{..}' – {real part (RI) | linear magnitude (MA) | logarithmic magnitude (DB)}

{..}" – {imaginary part (RI) | phase in degrees (MA) | phase in degrees (DB)}

7.4.1 Touchstone File Saving/Recalling

To select the saving type, use the following softkeys:

*Save/Recall > Save Data To Touchstone File > Type > 1-Port (s1p) | 2-Port (s2p)"
For 1-port saving type select the port number using the following softkeys:

Save/Recall > Save Data To Touchstone File > Select Port (s1p).

To select the data format, use the following softkeys:

Save/Recall > Save Data To Touchstone File > Format > RI | MA | DB

To save file to the hard disk, use the following softkeys:

Save/Recall > Save Data To Touchstone File > Save File...

Enter the file name in the dialog that appears.
8 SYSTEM SETTINGS

8.1 Analyzer Presetting

Analyzer presetting feature allows the user to restore the default settings of the Analyzer.

The default settings of your Analyzer are specified in Appendix 1.

To preset the Analyzer, use the following softkeys:

System > Preset > OK

8.2 Graph Printing

This section describes the print/save procedures for the graph data.

The print function is provided with the preview feature, which allows the user to view the image to be printed on the screen, and/or save it to a file.

You can print out the graphs using three different applications:

- MS Word;
- Image Viewer for Windows;
- Print Wizard of the Analyzer.

Note: MS Word application must be installed in Windows system.

Note: The Print Wizard requires at least one printer to be installed in Windows.

You can select the print color before the image is transferred to the printing application:

- Color (no changes);
- Gray Scale;
- Black & White.

You can invert the image before it is transferred to the printing application.

You can add current date and time before the image is transferred to the printing application.
To print a graph, use the following softkeys:

System > Print

Select the print color, using **Print Color** softkey:

- **Color**
- **Gray Scale**
- **Black & White**

If necessary, invert the image by **Invert Image** softkey.

If necessary, select printing of date and time by **Print Date & Time** softkey.

Then select the printing application, using one of the following softkeys:

- **Print: MS Word**
- **Print: Windows**
- **Print: Embedded**

8.3 Reference Frequency Oscillator Selection

The Analyzer can operate either with internal or with external reference frequency (10 MHz) oscillator. Initially the Analyzer is set to operation with the internal source of the reference frequency.

You can switch between these two modes in the softkey menu.

To select the reference frequency oscillator, use the following softkeys:

System > Misc Setup > Ref Source
8.4 System Correction Setting

The Analyzer is supplied from the manufacturer calibrated with the calibration coefficients stored in its non-volatile memory. The factory calibration is used by default for initial correction of the measured S-parameters. Such calibration is referred to as system calibration, and the error correction is referred to as system correction.

The system correction ensures initial values of the measured S-parameters before the Analyzer is calibrated by the user. The system calibration is performed at the plane of the port physical connectors and leaves out of account the cables and other fixture used to connect the DUT. The measurement accuracy of the Analyzer without its calibration with the user setup is not rated.

Normally, the disabling of the system correction is not required for a calibration and further measurements.

The system correction can be disabled only in case the user provided a proper calibration for the Analyzer. The measurement accuracy is determined by user calibration and does not depend on the system correction status. The only rule that should be observed is to disable/enable the system correction before the user calibration, so that the calibration and further measurement could be performed under the same conditions.

If the system correction is disabled by the user, this is indicated in the instrument status bar.

| Note | TRL calibration is not compatible with system correction. The system correction will be automatically turned off when TRL calibration is performed. |

To disable/enable the system correction, use the following softkeys:

System > Misc Setup > System Correction
8.5 Beeper Setting

The Analyzer features two settings of the beeper, which can be toggled on/off independently from each other:

- **operation complete beeper** – informs the user about normal completion of standard measurements during calibration;
- **warning beeper** – informs the user about an error or a fail limit test result.

To toggle the beeper, use the following softkeys:

- **System > Misc Setup > Beeper > Beep Complete**
- **System > Misc Setup > Beeper > Beep Warning**

To test the beeper, use the following softkeys:

- **System > Misc Setup > Beeper > Test Beep Complete**
- **System > Misc Setup > Beeper > Test Beep Warning**
8.6 User Interface Setting

The Analyzer enables you to make the following user interface settings:

- Toggle between full screen and window display
- Set color of:
 - Data traces
 - Memory traces
 - Background and grid of graph
 - Background and font of menu bar
- Style and width of:
 - Data traces
 - Memory traces
 - Graph grid
- Font size of:
 - Softkeys
 - Channel window
 - Channel status bar
 - Instrument status bar
- Invert color of graph area
- Hide/show menu bar
- Hide/show stimulus graticule (X axis)
- Set response graticule mode (Y axis)
 - off
 - on for active trace
 - on for all traces

Note: The user interface settings are automatically saved and will restore when you next time turn the Analyzer on. No particular saving procedure is required. There is a button for restoration of the default factory settings for the user interface.
To toggle between full screen and window display, use the following softkeys:

Display > Properties > Full Screen

To change the color of the active data trace, use the following softkeys:

Display > Properties > Color > Data Trace

Then select the rate (from 0 to 255) of color components.

The changes made to the color of the active data traces will affect all the traces with the same number in other channels.

To change the color of the active memory trace, use the following softkeys:

Display > Properties > Color > Memory Trace

Then select the rate (from 0 to 255) of color components.

The changes made to the color of the active memory traces will affect all the traces with the same number in other channels.

To change the color of the background of the graph, use the following softkeys:

Display > Properties > Color > Background

Then select the rate (from 0 to 255) of color components.
To change the color of the grid of the graph, use the following softkeys:

Display > Properties > Color > Grid

Then select the rate (from 0 to 255) of color components.

To change the style and width of a data trace, use the following softkeys:

Display > Properties > Lines > Data Trace Style
Display > Properties > Lines > Data Trace Width

To change the style and width of a memory trace, use the following softkeys:

Display > Properties > Lines > Mem Trace Style
Display > Properties > Lines > Mem Trace Width

To change the grid style, the following softkeys:

Display > Properties > Lines > Grid Style

To change the font size on the softkeys, in the channel window, in the channel status bar, or the instrument status bar, use the following softkeys:

Display > Properties > Font Size > Softkeys
Display > Properties > Font Size > Window Channel
Display > Properties > Font Size > Channel State
Display > Properties > Font Size > Instr State

Then select the font size from 10 to 13.
To invert the color of the graph area, use the following softkeys:

Display > Properties > Invert Color

To hide/show the menu bar, use the following softkeys:

Display > Properties > Menu Bar

To hide/show stimulus graticule (X axis), use the following softkeys:

Display > Properties > Frequency Label

To set the response graticule label mode (Y axis), use the following softkeys:

Display > Properties > Graticule Label

OFF | Active Trace | All Traces

To restore the default factory settings, use the following softkeys:

Display > Properties > Set Defaults
8.7 Screen Update Setting

Screen updating can be disabled to reduce the sweep time. This function can be useful during remote control over the Analyzer via COM/DCOM interfaces.

To disable the screen updating, use the following softkeys:

Display > Update

Note
If the screen updating is off, this will be indicated in the instrument status bar Update Off.
8.8 Power Meter Setting

An external power meter can be connected to the Analyzer to perform power calibration of the test ports. Connect the power meter to PC directly to USB port or via USB/GPIB adapter. Then install the power meter software. The list of the power meters supported by the Analyzer is shown in table 8.1.

Figure 8.1 Power meter setup example
Table 8.1 Supported power meters

<table>
<thead>
<tr>
<th>Power Meter</th>
<th>Name in Analyzer Program</th>
<th>USB Connection Type</th>
<th>Additional Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohde&Schwarz NRP-Z series Sensors (without Power Meter)</td>
<td>R&S NRP-Z sensors</td>
<td>R&S NRP-Z4 Adapter</td>
<td>• Rohde&Schwarz NRP-Toolkit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Rohde&Schwarz RSNRPZ Instrument driver</td>
</tr>
<tr>
<td>NRP-Z51 (recommended)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R&S NRVS</td>
<td>GPIB/USB Adapter</td>
<td>• GPIB/USB Adapter driver</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• VISA agvisa32.dll Library</td>
</tr>
</tbody>
</table>

To select the power meter, use the following softkeys:

System > Misc Setup > Power Meter Setup > Power Meter > R&S NRP-Z sensors (USB) | R&S NRVS (GPIB)

If the power meter has GPIB interface, set the GPIB board address and the power meter address in the bus, using the following softkeys:

System > Misc Setup > Power Meter Setup > GPIB Board

System > Misc Setup > Power Meter Setup > GPIB Address

Sensor Info... softkey checks the connection and settings of the power meter. It provides sensor type, if the communication between the Analyzer and the power meter has been successfully established.
9 MAINTENANCE AND STORAGE

9.1 Maintenance Procedures

This section describes the guidelines and procedures of maintenance, which will ensure fault-free operation of your Analyzer.

The maintenance of the Analyzer consists in cleaning of the instrument, factory calibrations, and regular performance tests.

9.1.1 Instrument Cleaning

This section provides the cleaning instructions required for maintaining the proper operation of your Analyzer.

To remove contamination from parts other than test ports and any connectors of the Analyzer, wipe them gently with a soft cloth that is dry or wetted with a small amount of water and wrung tightly.

It is essential to keep the test ports always clean as any dust or stains on them can significantly affect the measurement capabilities of the instrument. To clean the test ports (as well as other connectors of the Analyzer), use the following procedure:

- using compressed air, remove or loosen the contamination particles;
- clean the connectors using a lint-free cleaning cloth wetted with a small amount of ethanol and isopropyl alcohol (when cleaning a female connector, avoid snagging the cloth on the center conductor contact fingers by using short strokes);
- dry the connector with low-pressure compressed air.

Always completely dry a connector before using it.

Never use water or abrasives for cleaning any connectors of the Analyzer.

Do not allow contact of alcohol to the surface of the insulators of the connectors.

When connecting male-female coaxial connectors always use a calibrated wrench.

<table>
<thead>
<tr>
<th>WARNING</th>
<th>Never perform cleaning of the instrument if the power cable is connected to the power outlet.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Never clean the internal components of the instrument.</td>
</tr>
</tbody>
</table>

9.1.2 Factory Calibration

Factory calibration is a regular calibration performed by the manufacturer or an authorized service center. We recommend you to send your Analyzer for factory calibration every three years.
9.1.3 Performance Test

Performance test is the procedure of the Analyzer performance verification by confirming that the behavior of the instrument meets the published specifications.

Performance test of the Analyzer should be performed in accordance with *Performance Test Instructions*.

The Analyzer software is provided with **System > Performance Test** submenu for automatic verification execution.

Performance test period is one year.

9.2 Storage Instructions

Before first use, store your Analyzer in the factory package at environment temperature from 0°C to +40°C and relative humidity up to 80% (at 25°C).

After you have removed the factory package, store the Analyzer at environment temperature from +10°C to +35°C and relative humidity up to 80% (at 25°C).

Ensure to keep the storage facilities free from dust, fumes of acids and alkalis, aggressive gases, and other chemicals, which can cause corrosion.
10 WARRANTY INFORMATION

1. The manufacturer warrants the Network Analyzer to conform to the specifications of this Manual when used in accordance with the regulations of operation detailed in this Manual.

2. The manufacturer will repair or replace without charge, at its option, any Analyzer found defective in manufacture within the warranty period, which is twelve (12) months from the date of purchase. Should the user fail to submit the warranty card appropriately certified by the seller with its stamp and date of purchase the warranty period will be determined by the date of manufacture.

3. The warranty is considered void if:
 a) the defect or damage is caused by improper storage, misuse, neglect, inadequate maintenance, or accident;
 b) the product is tampered with, modified or repaired by an unauthorized party;
 c) the product's seals are tampered with;
 d) the product has mechanical damage.

4. The batteries are not included or covered by this warranty.

5. Transport risks and costs to and from the manufacturer or the authorized service centers are sustained by the buyer.

6. The manufacturer is not liable for direct or indirect damage of any kind to people or goods caused by the use of the product and/or suspension of use due to eventual repairs.

7. When returning the faulty product please include the accurate details of this product and clear description of the fault. The manufacturer reserves the right to check the product in its laboratories to verify the foundation of the claim.

Manufacturer's contact information:

__
__
__
__
__
__
__
Appendix 1 — Default Settings Table

Default values defined in the process of the initial factory setup.

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Default Setting</th>
<th>Parameter Setting Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Saving Type</td>
<td>State and Calibration</td>
<td>Analyzer</td>
</tr>
<tr>
<td>Touchstone Data Format</td>
<td>Real-Imaginary</td>
<td>Analyzer</td>
</tr>
<tr>
<td>Allocation of Channels</td>
<td></td>
<td>Analyzer</td>
</tr>
<tr>
<td>Active Channel Number</td>
<td>1</td>
<td>Analyzer</td>
</tr>
<tr>
<td>Marker Value Identification Capacity (Stimulus)</td>
<td>7 digits</td>
<td>Analyzer</td>
</tr>
<tr>
<td>Marker Value Identification Capacity (Response)</td>
<td>4 digits</td>
<td>Analyzer</td>
</tr>
<tr>
<td>Marker Table</td>
<td>OFF</td>
<td>Analyzer</td>
</tr>
<tr>
<td>Reference Frequency Source</td>
<td>Internal</td>
<td>Analyzer</td>
</tr>
<tr>
<td>Trigger Signal Source</td>
<td>Internal</td>
<td>Analyzer</td>
</tr>
<tr>
<td>Reference Channel Error Correction</td>
<td>ON</td>
<td>Analyzer</td>
</tr>
<tr>
<td>System Correction</td>
<td>ON</td>
<td>Analyzer</td>
</tr>
<tr>
<td>Allocation of Traces</td>
<td></td>
<td>Channel</td>
</tr>
<tr>
<td>Vertical Divisions</td>
<td>10</td>
<td>Channel</td>
</tr>
<tr>
<td>Channel Title Bar</td>
<td>OFF</td>
<td>Channel</td>
</tr>
<tr>
<td>Channel Title</td>
<td>Empty</td>
<td>Channel</td>
</tr>
<tr>
<td>«FAIL» Label Display (Limit Test)</td>
<td>OFF</td>
<td>Channel</td>
</tr>
<tr>
<td>Segment Sweep Frequency Axis Display</td>
<td>Frequency Order</td>
<td>Channel</td>
</tr>
<tr>
<td>Traces per Channel</td>
<td>1</td>
<td>Channel</td>
</tr>
<tr>
<td>Active Trace Number</td>
<td>1</td>
<td>Channel</td>
</tr>
<tr>
<td>Marker Coupling</td>
<td>ON</td>
<td>Channel</td>
</tr>
<tr>
<td>Sweep Type</td>
<td>Linear Frequency</td>
<td>Channel</td>
</tr>
<tr>
<td>Number of Sweep Points</td>
<td>201</td>
<td>Channel</td>
</tr>
<tr>
<td>Stimulus Start Frequency</td>
<td>300 kHz</td>
<td>Channel</td>
</tr>
<tr>
<td>Stimulus Stop Frequency</td>
<td>8.0 GHz</td>
<td>Channel</td>
</tr>
<tr>
<td>Stimulus CW Frequency</td>
<td>300 kHz</td>
<td>Channel</td>
</tr>
<tr>
<td>Stimulus Start Power Level</td>
<td>−60 dBm</td>
<td>Channel</td>
</tr>
<tr>
<td>Stimulus Stop Power Level</td>
<td>10 dBm</td>
<td>Channel</td>
</tr>
<tr>
<td>Stimulus Power Level</td>
<td>0 dBm</td>
<td>Channel</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
<td>Channel</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Stimulus Power Slope</td>
<td>0 dBm</td>
<td>Channel</td>
</tr>
<tr>
<td>Stimulus IF Bandwidth</td>
<td>10 kHz</td>
<td>Channel</td>
</tr>
<tr>
<td>Sweep Measurement Delay</td>
<td>0 sec.</td>
<td>Channel</td>
</tr>
<tr>
<td>Sweep Range Setting</td>
<td>Start / Stop</td>
<td>Channel</td>
</tr>
<tr>
<td>Number of Segments</td>
<td>1</td>
<td>Channel</td>
</tr>
<tr>
<td>Points per Segment</td>
<td>2</td>
<td>Channel</td>
</tr>
<tr>
<td>Segment Start Frequency</td>
<td>300 kHz</td>
<td>Channel</td>
</tr>
<tr>
<td>Segment Stop Frequency</td>
<td>300 kHz</td>
<td>Channel</td>
</tr>
<tr>
<td>Segment Sweep Power Level</td>
<td>0 dBm</td>
<td>Channel</td>
</tr>
<tr>
<td>Segment Sweep IF Bandwidth</td>
<td>10 kHz</td>
<td>Channel</td>
</tr>
<tr>
<td>Segment Sweep Measurement Delay</td>
<td>0 sec.</td>
<td>Channel</td>
</tr>
<tr>
<td>Segment Sweep Power Level (Table Display)</td>
<td>OFF</td>
<td>Channel</td>
</tr>
<tr>
<td>Segment Sweep IF Bandwidth (Table Display)</td>
<td>OFF</td>
<td>Channel</td>
</tr>
<tr>
<td>Segment Sweep Measurement Delay (Table Display)</td>
<td>OFF</td>
<td>Channel</td>
</tr>
<tr>
<td>Segment Sweep Range Setting</td>
<td>Start / Stop</td>
<td>Channel</td>
</tr>
<tr>
<td>Averaging</td>
<td>OFF</td>
<td>Channel</td>
</tr>
<tr>
<td>Averaging Factor</td>
<td>10</td>
<td>Channel</td>
</tr>
<tr>
<td>Trigger Mode</td>
<td>Continuous</td>
<td>Channel</td>
</tr>
<tr>
<td>Table of Calibration Coefficients</td>
<td>Empty</td>
<td>Channel</td>
</tr>
<tr>
<td>Error Correction</td>
<td>OFF</td>
<td>Channel</td>
</tr>
<tr>
<td>Port Z Conversion</td>
<td>OFF</td>
<td>Channel</td>
</tr>
<tr>
<td>Port 1 Simulated Impedance</td>
<td>50 Ω</td>
<td>Channel</td>
</tr>
<tr>
<td>Port 2 Simulated Impedance</td>
<td>50 Ω</td>
<td>Channel</td>
</tr>
<tr>
<td>Port 1 De-embedding</td>
<td>OFF</td>
<td>Channel</td>
</tr>
<tr>
<td>Port 2 De-embedding</td>
<td>OFF</td>
<td>Channel</td>
</tr>
<tr>
<td>Port 1 De-embedding S-parameter File</td>
<td>Empty</td>
<td>Channel</td>
</tr>
<tr>
<td>Port 2 De-embedding S-parameter File</td>
<td>Empty</td>
<td>Channel</td>
</tr>
<tr>
<td>Port 1 Embedding</td>
<td>OFF</td>
<td>Channel</td>
</tr>
<tr>
<td>Port 2 Embedding</td>
<td>OFF</td>
<td>Channel</td>
</tr>
<tr>
<td>Port 1 Embedding User File</td>
<td>Empty</td>
<td>Channel</td>
</tr>
<tr>
<td>Port 2 Embedding User File</td>
<td>Empty</td>
<td>Channel</td>
</tr>
<tr>
<td>Measurement Parameter</td>
<td>S11</td>
<td>Trace</td>
</tr>
<tr>
<td>Trace Scale</td>
<td>10 dB / Div.</td>
<td>Trace</td>
</tr>
<tr>
<td>Reference Level Value</td>
<td>0 dB</td>
<td>Trace</td>
</tr>
<tr>
<td>Reference Level Position</td>
<td>5 Div.</td>
<td>Trace</td>
</tr>
<tr>
<td>Data Math</td>
<td>OFF</td>
<td>Trace</td>
</tr>
<tr>
<td>Parameter</td>
<td>Default Setting</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Phase Offset</td>
<td>0°</td>
<td>Trace</td>
</tr>
<tr>
<td>Electrical Delay</td>
<td>0 sec.</td>
<td>Trace</td>
</tr>
<tr>
<td>S-parameter Conversion</td>
<td>OFF</td>
<td>Trace</td>
</tr>
<tr>
<td>S-parameter Conversion Function</td>
<td>Z: Reflection</td>
<td>Trace</td>
</tr>
<tr>
<td>Trace Display Format</td>
<td>Logarithmic</td>
<td>Magnitude (dB)</td>
</tr>
<tr>
<td>Time Domain Transformation</td>
<td>OFF</td>
<td>Trace</td>
</tr>
<tr>
<td>Time Domain Transformation Start</td>
<td>–10 nsec.</td>
<td>Trace</td>
</tr>
<tr>
<td>Time Domain Transformation Stop</td>
<td>10 nsec.</td>
<td>Trace</td>
</tr>
<tr>
<td>Time Domain Kaiser-Beta</td>
<td>6</td>
<td>Trace</td>
</tr>
<tr>
<td>Time Domain Transformation Type</td>
<td>Bandpass</td>
<td>Trace</td>
</tr>
<tr>
<td>Time Domain Gate</td>
<td>ON</td>
<td>Trace</td>
</tr>
<tr>
<td>Time Domain Gate Start</td>
<td>–10 ns</td>
<td>Trace</td>
</tr>
<tr>
<td>Time Domain Gate Stop</td>
<td>10 ns</td>
<td>Trace</td>
</tr>
<tr>
<td>Time Domain Gate Type</td>
<td>Bandpass</td>
<td>Trace</td>
</tr>
<tr>
<td>Time Domain Gate Shape</td>
<td>Normal</td>
<td>Trace</td>
</tr>
<tr>
<td>Smoothing</td>
<td>OFF</td>
<td>Trace</td>
</tr>
<tr>
<td>Smoothing Aperture</td>
<td>1%</td>
<td>Trace</td>
</tr>
<tr>
<td>Trace Display Mode</td>
<td>Data</td>
<td>Trace</td>
</tr>
<tr>
<td>Limit Test</td>
<td>OFF</td>
<td>Trace</td>
</tr>
<tr>
<td>Limit Line Display</td>
<td>OFF</td>
<td>Trace</td>
</tr>
<tr>
<td>Defined Limit Lines</td>
<td>Empty</td>
<td>Trace</td>
</tr>
<tr>
<td>Number of Markers</td>
<td>0</td>
<td>Trace</td>
</tr>
<tr>
<td>Marker Position</td>
<td>300 kHz</td>
<td>Trace</td>
</tr>
<tr>
<td>Marker Search</td>
<td>Maximum</td>
<td>Trace</td>
</tr>
<tr>
<td>Marker Tracking</td>
<td>OFF</td>
<td>Trace</td>
</tr>
<tr>
<td>Marker Search Target</td>
<td>0 dB</td>
<td>Trace</td>
</tr>
<tr>
<td>Marker Search Target Transition</td>
<td>Both</td>
<td>Trace</td>
</tr>
<tr>
<td>Marker Search Peak Polarity</td>
<td>Positive</td>
<td>Trace</td>
</tr>
<tr>
<td>Marker Search Peak Excursion</td>
<td>3 dB</td>
<td>Trace</td>
</tr>
<tr>
<td>Bandwidth Parameter Search</td>
<td>OFF</td>
<td>Trace</td>
</tr>
<tr>
<td>Marker Search Bandwidth Value</td>
<td>–3 dB</td>
<td>Trace</td>
</tr>
<tr>
<td>Marker Search Range</td>
<td>OFF</td>
<td>Trace</td>
</tr>
<tr>
<td>Marker Search Start</td>
<td>0</td>
<td>Trace</td>
</tr>
<tr>
<td>Marker Search Stop</td>
<td>0</td>
<td>Trace</td>
</tr>
</tbody>
</table>