AFG 2020 Characteristics

Waveshapes

Sine, square, triangle, ramp, pulse, and arbitrary.

Frequency/Phase

Clock: 250 MHz, 4.0 ns, 1 ppm.

Frequency:

Synthesizer On Mode:

- Frequency: 10 digits.
- Range: Sine, to 100 MHz; Other, to 2.5 MHz.

Synthesizer Off Mode:

- Frequency: 3 digits.
- Range: Square, to 50 MHz; Other, to 31.2 MHz.

Period: 10 digits, 2.0 s to 4.0 ns.

Points/Cycle: 5 digits, 250 MHz divided by frequency for <100 MHz, up to 1024 or 2048.

Phase: 4 digits. Range: $\pm 360^{\circ}$. Resolution: 0.1° .

Amplitude/Offset

Amplitude: 4 digits. Resolution:

○ 0.4 V_{p-p}: 1 mV_{p-p}.
○ 2 V_{p-p}: 2 mV_{p-p}.
○ 10 V_{p-p}: 10 mV_{p-p}.

Maximum Amplitude: 10 V_{p-p} into 50 ohms, 20 V_{p-p} open circuit.

Ranges: 0.4 V_{p-p}, 2.0 V_{p-p}, 10 V_{p-p}.

DC Accuracy:

 $\begin{array}{l} 0.4 \ V_{p\text{-}p}\text{:} \pm (1.0\% \ of \ setting + 1 \ mV_{p\text{-}p})\text{.} \\ 2.0 \ V_{p\text{-}p}\text{:} \pm (1.0\% \ of \ setting + 5 \ mV_{p\text{-}p})\text{.} \\ 10 \ V_{p\text{-}p}\text{:} \pm (2.5\% \ of \ setting + 50 \ mV_{p\text{-}p})\text{.} \end{array}$

Offset: 4 digits.

Resolution:

- $\circ 0.4 V_{p-p}: 1 \text{ mV}.$
- $\circ 2 V_{p-p}: 2 mV.$
- $\circ 10 V_{p-p}$: 10 mV.

Maximum Offset: ± 5 V into 50 ohms; ± 10 V open circuit. Accuracy:

- $\circ 0.4 V_{p-p}$: $\pm (1.0\% \text{ of setting} + 1 \text{ mV}).$
- $\circ 2.0 V_{p-p}$: ±(1.0% of setting + 5 mV).
- \circ 10 V_{p-p}: ±(2.5% of setting + 50 mV).

Noise Floor:

Range:

- o 0.4 V_{p-p}: -128 dBm/Hz at 10 MHz.
- $\odot 2.0 V_{p-p}$: -114 dBm/Hz.
- $\circ 10 V_{p-p}$: -100 dBm/Hz.

Sine

SSB Phase Noise:

Synthesizer On: -90 dBc/Hz. Synthesizer Off: -80 dBc/Hz.

Harmonics:

Synthesizer On with 100 MHz Low Pass Filter:

	10 V _{p-p}	2 V _{p-p} , 0.4 V _{p-p}
<100 kHz	-40 dBc	-60 dBc
1 MHz	-40 dBc	-55 dBc
10 MHz	-35 dBc	-55 dBc
100 MHz	-25 dBc	-30 dBc

Synthesizer Off with 50 MHz LPF:

	10 V _{p-p}	2 V _{p-p} , 0.4 V _{p-p}
<100 kHz	-40 dBc	-55 dBc
1 MHz	-40 dBc	-55 dBc
10 MHz	-35 dBc	-40 dBc
100 MHz	-35 dBc	-40 dBc

Spurious:

	Synthesizer On	Synthesizer Off
<50 kHz	-60 dBc	-55 dBc
500 kHz	-55 dBc	-55 dBc
5 MHz	-45 dBc	-45 dBc
31.2 MHz	-40 dBc	-35 dBc
50 MHz	-40 dBc	
100 MHz	-30 dBc	

Amplitude: Flatness: Synthesizer On with 100 MHz LPF:

	10 V _{p-p}	2 V _{p-p} , 0.4 V _{p-p}
>/=100 kHz to =50<br MHz	±0.5 dB	±0.5 dB
=100 MHz</td <td>±1.0 dB</td> <td>±0.5 dB</td>	±1.0 dB	±0.5 dB

Synthesizer Off with 50 MHz LPF:

	All Ranges
>/=100 kHz to =10 MHz</td <td>±1.0 dB</td>	±1.0 dB
=31.2 MHz</td <td>±3.0 dB</td>	±3.0 dB

0.4 $V_{p\text{-}p}$ and 2.0 $V_{p\text{-}p}$ Accuracy: DC accuracy $\pm 3.0\%$ + Flatness.

10 V_{p-p} Accuracy: DC accuracy $\pm 5.0\%$ + Flatness.

Power: 4 digits up to 23.98 dBm.

Square

Amplitude:

Flatness:

	50 MHz LPF	Full Pass
=100 kHz to</td <td>±2.0%</td> <td>±2.0%</td>	±2.0%	±2.0%
=2.5 MHz</td <td>±5.0%</td> <td>±5.0%</td>	±5.0%	±5.0%
=15.6 MHz</td <td>±5.0%</td> <td>±5.0%</td>	±5.0%	±5.0%
=50 MHz</td <td>-30%</td> <td>±10%</td>	-30%	±10%

Accuracy: DC accuracy $\pm 2\%$ + Flatness.

Rise/Fall Time:

With 50 MHz LPF: Within 9.0 ns. With Full Pass: Within 4.0 ns.

Aberrations:

With 50 MHz LPF:

 \circ 0.4 V_{p-p} and 2 V_{p-p}1: Within 5% + 2 mV_{p-p}.

 $\circ 10 V_{p-p}$: Within 7% + 10 mV_{p-p}.

With Full Pass:

- \circ 0.4 V_{p-p} and 2 V_{p-p}: Within 7% + 2 mV_{p-p}.
- $\circ 10 V_{p-p}$: Within 12% + 10 mV_{p-p}.

Triangle

Amplitude:

Flatness with 50 MHz LPF:

</=100 kHz: ±2.0%.
</=2.5 MHz: -7.0%.
</=15.6 MHz: -20%.
</=31.2 MHz:-40%.

Accuracy: DC accuracy $\pm 4.0\%$ + Flatness.

Ramp

Timing:

Rise/Fall: 4 digits, 0% to 100% of period.

Amplitude:

Flatness with 50 MHz LPF:

 $\odot </=100 \text{ kHz: } \pm 2.0\%.$

○ </=2.5 MHz: -8.0%.

○ </=15.6 MHz: -25%.

○ </=31.2 MHz: -45%.

Accuracy: DC accuracy $\pm 4.0\%$ + Flatness.

Pulse

Pulse Width: 20% to 50.0% of period.

Transition: 0% to 35.0% of pulse width.

Amplitude:

Flatness with 50 MHz LPF:

- </=100 kHz: ±2.0%.
- </=2.5 MHz: -5.0%.
- </=15.6 MHz: -5.0%.
- </=31.2 MHz: -20%.

Accuracy: DC accuracy $\pm 2\%$ + Flatness.

Arbitrary

Maximum Points:

Any periodic waveform described with 12 bits and 1024

points.

Number of Waveforms: 16.

Sweep

Type: Linear, log.

Frequency: 5 digits.

- Start, Stop: Sine: 1.0 Hz to 100 MHz.
- Others: 1.0 Hz to 2.5 MHz.

Step (Linear): Within 2.5 MHz, 5 digits.

Points/decade (Log): 10 to 1000, 1-2-5 sequence.

- \circ 1.0 Hz to 10 Hz: </=10.
- 10 Hz to 100 Hz: <100.
- 100 Hz to 1 kHz: <1000.
- 1 kHz to 100 MHz: </=1000.

Dwell TIme: 4 digits.

Sweep: 0.5 µs to 100 s. Return: 0.5 µs to 100 s.

Marker:

Number: 3. Frequency: Between Start and Stop. Time: 0.5 µs to 100 s.

Points:

Sweep: 2 to 5001. Return: 1 to 5000.

Maximum Period: 2048 seconds </= Sweep + Return Time.

Modulation

Amplitude Modulation (Internal and External):

Amplitude: 4 digits, -10.00 V_{p-p} to +10.00 V_{p-p} . External Channel 2 Amplitude: 1 V_{p-p} typical. Depth: 3 digits, 0 to 100%. Double Sideband Suppressed Carrier: ON/OFF. Modulation Rate:

 \circ Period: 10 µs to 1 s every 0.2 µs.

- \circ Accuracy: $\pm 0.1\%$.
- \circ Risetime: Within 2 µs.
- AM Noise: Within 1% of range.

Offset Modulation (Internal):

High, Low: 4 digits, -5.000 V to +5.000 V_{p-p} . Modulation Rate:

- \circ Period: 10 µs to 1 s every 0.2 µs.
- \circ Accuracy: $\pm 0.1\%$.
- \circ Risetime: Within 2 µs.
- Modulation Noise: Within 1% of range.

Frequency Modulation (Internal):

Center Frequency: 9 digits. Deviation: 6 digits. Modulation Rate:

- \circ Period: 10 µs to 1 s every 0.2 µs.
- \circ Accuracy, $\pm 0.1\%$.

Frequency Shift Keying (FSK) (Internal):

Key:

- Number of Keys: 2 to 256.
- Frequency: Within 100 MHz (sine) or 2.5 MHz (other).
- \odot Amplitude: Within 10 V_{p-p}.
- \circ Offset: Within ± 5 V.

Data:

- Number of Data, 2 to 2,048.
- Frequency Transition Time: 4 ns.
- Data Rate: 1 to 2,500,000.
- \circ Period: 1 s to 0.4 µs, every 0.1 µs.

Phase Shift Keying (PSK) (Internal):

Key:

- Number of Keys: 2 to 256.
- \odot Phase: Within $\pm 360.0^{\circ}$.
- \circ Amplitude: Within 10 V_{p-p}.
- \circ Offset: Within ± 5 V.

Data:

• Number of Data: 2 to 2,048.

- Phase Transition Time: 800 ns (200 clocks).
- Data Rate: 1 to 50,000.
- \circ Period: 1 s to 20 µs, every 0.1 µs.

Reference Clock

Type: TCXO.

Nominal Frequency: 10 MHz.

Accuracy: ± 1 ppm (0° C to ~ 50 ° C).

Stability: ± 1 ppm/year (20° C to ~ 30° C).

Main Output

Filters:

100 MHz Brick Wall:

• To 100 MHz: Within 1 dB.

0 125 MHz to 1 GHz: Less than -40 dB

50 MHz Linear Phase: -3 dB ±0.5 dB at 50 MHz.

Output Impedance: 50 ohms typical.

Output Protection: Instrument is non-destructively protected against short circuits or accidental voltage of up to ± 5 V DC plus peak AC applied to the main output connector.

Auxiliary Outputs

Sync Output:

Level: Positive TTL. Minimum Pulse Width: 400 ns. Output Impedance: 51 ohms nominal.

Marker Output:

Level: Positive TTL. Minimum Pulse Width: 100 ns. Output Impedance: 51 ohms nominal.

10 MHz Output:

Level: TTL square wave. Duty Cycle: 50% to 75%. Output Impedance: 51 ohms nominal.

Auxiliary Inputs

Trigger/Gate In:

Sensitivity: 200 mV_{p-p} minimum. Bandwidth: DC to 10 MHz. Amplitude: 30 ns, 200 mV_{p-p} amplitude. Input Impedance: 1 kohm \pm 5%. Maximum Input Voltage: </=10 V DC + peak AC. Threshold: Positive slope for Arming and Time Burst, and positive true for Gate. Negative slope for Arming and Time Burst, and negative true for Gate. Range: \pm 9.90 V. Resolution: 0.1 V. Accuracy: \pm 10% \pm 100 mV.

AM Input:

Input Impedance: 10 kohms ±5%. Maximum Input Voltage: 10 V DC + peak AC.

REF IN:

Level: TTL compatible. Range: 10 MHz ±10 kHz. Input Impedance: 10 kohms ±5%. Maximum Input Voltage: 0 V to +5 V.

Operating Modes

Continuous: Generates the waveform continuously.

Triggered Continuous: Output quiescent until triggered by an external, GPIB, or manual trigger; then generates an output after pre-defined delay and stops by pressing STOP button or GPIB command.

Gated: Same as triggered mode except output is executed after the pre-defined delay for the duration of the gated signal.

Time Burst: Output quiescent until triggered by an external, GPIB, or manual trigger; then outputs for pre-defined duration. Output: 3 digits, 0.4 μ s to 100 s. Accuracy: $\pm 0.1 \ \mu$ s.

Ext. Trigger Delay: 5 digits, 0.7 µs to 100 s. Accuracy:

 \circ Synthesizer On: $\pm(0.1 \ \mu s + 0.01\%)$.

• Synthesizer Off: $\pm (0.2 \,\mu s + 0.01\%)$.

Programmable Interface

GPIB: IEEE-488.2-1987 compatible.

General Characteristics

Environmental

Temperature:

Operating: $+10^{\circ}$ C to $+40^{\circ}$ C. Non-operating: -20° C to $+45^{\circ}$ C.

Temperature Change:

Operating: $</=15^{\circ}$ C per hour (no condensation). Non-operating: $</=30^{\circ}$ C per hour (no condensation).

Humidity: Up to 80% RH.

Altitude:

Operating: 4.6 km (15,000 ft). Non-operating: 15 km (50,000 ft).

Vibration: 0.003 in. p-p, 5 Hz to 55 Hz (0.5 g at 55 Hz).

Shock: 20 g (1/2 sine) 11 ms duration.

EMC: Within limits of FCC Regulations, Part 15, Subpart J, Class A; VDE 0871/6.78, Class B.

Electrical Discharge:

Operating Maximum Test Voltage: 15 kV (150 pF through 150 ohms).

Safety: Designed to meet UL 1244 and CSA 22.2 No. 231.

Power

Source Power:

Voltage Ranges: Selectable from 90 to 127 V AC or 180 to 250 V AC with internal jumper. Line Frequency: 48 to 63 Hz.

Power Dissipation: 300 W.

Maximum Current: 5 amps. Physical

Dimensions	mm	in.
Height	164	6.4
Width	362	14.25*
Depth	491	19.25
Weight	kg	lb.
Net	9.0	19.8
* With handle.		

Other

Display: 7-inch diagonal, electro-magnetic deflection CRT.