Network Analyzers

For Evaluation and Inspection of Digital Communication Devices

R3766H/3767H Series

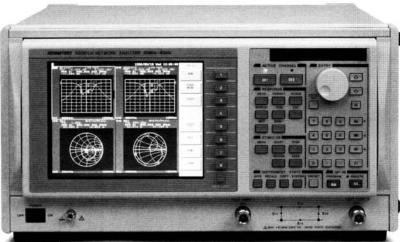
- Measurement frequency range
 - 40MHz to 8.0GHz R3766H/3767H Series
- Three models available for all types of applications

Type A: Basic Model

Type B: Built In SWR Bridge Model

Type C: Built In S-parameter Test Set Model

■ High sweep speed


0.15ms/point(with normalized calibration) 0.25ms/point(with 2-port full calibration)

- 4-channel, 8-trace high-performance display
- 100 dB dynamic range measurement

(Photo is R3767CH)

R3766H/3767H series Network Analyzers

Recent years have seen a great progress in digital information and communication equipment such as PDC/PHS digital mobile radio equipment and communication equipment for ISDN. Accordingly, requirements for dielectric filters, SAW filters, layer-built filters, antennas, isolators, power amplifiers, and other high-frequency electronic devices used in communication equipment are becoming more severe and stricter: higher frequency, smaller sizes, lower power consumption, and so on. The R3766H/3767H series is a vector network analyzers which can measure the amplitude, phase, group delay time and impedance of high-frequency electronic devices with high precision and high speed.

The series comes in three different models with measurement frequency ranges: 40MHz to 8.0GHz.

In addition, the use of newly developed high-speed signal processing architecture realizes high speed measurement of 0.15ms/point (at normalized calibration) or 0.25ms/point (at 2port full calibration) with 10 kHz resolution bandwidth.

One of the major advantages of the series is that it helps you choose the model which best suits your application.

The R3766H/3767H using a 7.8-inch large TFT color LCD is suitable both for line and engineering use. Each series comes in three different models including type A (basic model), type B (model with a built-in SWR bridge) and type C (model with a built-in S-parameter test set).

■ Programmed Sweep Realizes High-Speed and High-**Resolution Measurement**

The R3764H/3765H/3766H/3767H series is provided with the programmed sweep function as standard which makes it possible to vary output power and resolution bandwidth (RBW) during sweep. In evaluation of filter characteristics for instance, measurement with high speed, high accuracy and high reproducibility can be realized by varying resolution bandwidth and output power in pass or stop band.

■ Limit Line Function for Adjustment and Test

The limit line function performs PASS/FAIL test based on the judgment value set by the limit line editor and then displays the test result. In addition, the color of limit lines

and waveform data can be specified for each judgment area, allowing the user to make PASS/FAIL judgment at a glance during judgement on the screen.

In POLAR and Smith chart measurement, the series has the ability to make limit judgement both for amplitude/phase adjustment for specified frequency ranges and automatic test result judgement.

Improved H Series Performance Items

- Manually selectable display colors (256 colors)
- Expanded BASIC programming memory capacity (1MB)
- Expanded save register capacity (2MB)
- · Improved BASIC processing speed
- CDMA IF filter analysis function integrated
- New 3-port device calibration function

R3766H/3767H Series

■ Series for system use

32-line-by-8-character fluorescent character display

R3766AH/BH/CH (8.0GHz)

■ Series for stand-alone use

7.8-inch TFT color LCD

R3767AH/BH/CH (8.0GHz)

2 1 10	82.51	Application					
Product type	Advantages	Unipolar BPF Multipolar BPF Duplexer Power amp		Power amplifier	2-piece parallel measurement	Representative process lines	
A type General-purpose model R3766AH, R3767AH	Test set connectable			0	0	0	Preprocess: Dielectric filter Duplexer SAW filter, etc. Inspection line: Power amplifier
B type IZI measurement low-cost model R3766BH, R3767BH	Bridge integrated Transmission/reflection simultaneous measurement	0					Intermediate process: Dielectric filter Duplexer Mobile telephone antenna Inspection line: Mobile telephone antenna
C type S parameter full measurement model R3766CH, R3767CH	S parameter test set integrated Forward/reverse direction measurement		0				Inspection line: Dielectric filter SAW filter, cable. Circulator Isolator
							Technical development

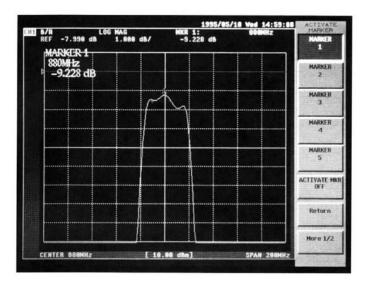
For R3766H/3767H, 3 types are prepared so that you can select the one which best matches your application.

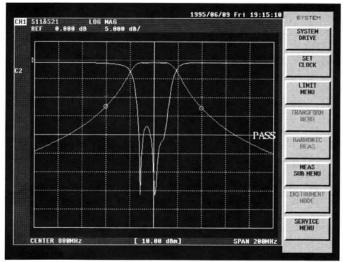
Basic Model R3766AH/3767AH

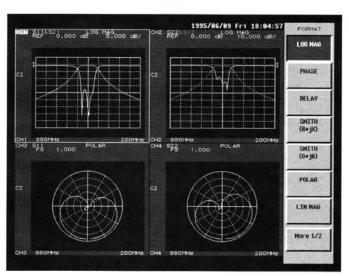
With a built-in signal separator and two inputs, type A can perform simultaneous measurement for two devices. By connecting the S-parameter test set, it can measure 2port devices; with the optional duplexer test set, it can measure a duplexer with three ports (ANT, RX, and TX terminals) which is used at the front section of mobile radio equipment. When the optional power amplifier test set is connected and a voltage & current generator (VIG) is used together, it can perform measurement on the power amplifier in portable phones. (In this case, however, extended network analyzer functions must be installed.)

Built-In SWR Bridge Model for [Z] measurement R3766BH/3767BH

Type B incorporates a power splitter and a SWR bridge, allowing transmission and reflection characteristics to be measured efficiently at the same time. In addition, by executing 1-port calibration, measurement with higher accuracy is possible.


Built-In S-Parameter Test Set Model R3766CH/3767CH


Type C incorporates the S-parameter test set mounting two SWR bridges, a power splitter and a semiconductor switch for forward/reverse switching. It can measure forward characteristics (S11 and S21) and reverse characteristics (S22 and S12) with high accuracy in auto-reversing mode.


By connecting the optional duplexer test adapter, it can measure a duplexer with three ports.

R3766H/3767H Series

Dielectric Filter Measurement

■ For Preprocess

This processes dielectric material into original component and then adjusts the specified resonance frequency, using transmission/reflection method.

In this stage, a low-price network analyzer with high speed and automatic measurement function is required. The R3764AH/ 3764BH model is recommended which is for system use and of low-priced type.

■ For Intermediate Process

This process assembles adjusted original component of dielectric material, processes into the form of filters and then implements filter characteristics.

In general, there are two types of adjustment methods: single directional and bi-directional methods. Adjustment is made while monitoring frequency characteristics by means of display waveform.

In this stage, TFT color LCD with tilt mechanism and better working environment are required. For this purpose, it is necessary to reduce the depth of the work area by 10 cm. In addition, the limit line function is required to make PASS/FAIL test at a glance in realtime. The R3765BH/3765CH model with a built-in SWR bridge and S-parameter test set for standalone use is recommended.

■ For Test Process

This process performs total characteristics test of molded and completed filters including spurious measurement.

This process has been made automatic to some extent. However, waveform observation by the human eyes is required as the final check. Because the process requires a wide range of measurement including spurious measurement, the highest R3767CH model of 8 GHz stand-alone type is recommended.

Network Analyzers

For Evaluation and Inspection of Digital Communication Devices

R3766H/3767H Series

м	easurement	Functione	

Sweep channel	2 channel (CH 1 and CH 2)			
Display channel	4 channel (CH 1, and CH 2, CH 3, and CH 4)			
Trace	2 traces/channel			
Display parameter	TypeA	ТуреВ	ТуреС	
	A/R, B/R	Transmission Reflection Transmission& reflection	S11, S21, S22, S12 S21&S11, S12&S22	
Format		-	'	
Rectangular coordinates	Log/linear amplitude, phase, and group delay or real part + imaginary part of complex parameter [Z], R, X (at measurement with impedance conversion) [Y], G, B (at measurement with admittance conversion) Phase extension display function			
Smith chart (R3767H only)	Maker reading : Lo imaginary part, R	g/linear amplitude, phas - jX, G + jB	e, real part +	
Polar coordinates (R3767H only)	Maker reading : Lo imaginary part	g/linear amplitude, phase	e, real part +	

Receiver Characteristics

Resolution bandwidth	10 kHz to 10 Hz (in	1 or 3 steps)
Amplitude characteristics Amplitude resolution Dynamic accuracy	0.001 dB With respect to -20 test port	dB below maximum input level of
		±0.3 dB (40 MHz ≤ f ≤ 3.8 GHz)
	0 to -10 dB	±0.8 dB (3.8 MHz ≤ f ≤ 8.0 GHz)
	2020000220002	±0.05 dB (40 MHz ≤ f ≤ 3.8 GHz)
	-10 to -20 dB	±0.2 dB (3.8 MHz ≤ f ≤ 8.0 GHz)
	-20 to -50 dB	±0.05 dB
	-50 to -60 dB	±0.10 dB
	-60 to -70 dB	±0.15 dB
	-70 to -80 dB	±0.40 dB
	-80 to 90 dB	±1.00 dB
Frequency characteristics	1.0 dB (-10 dBm, 25	5°C ±5°C)
Measurement range Phase resolution Frequency characteristics Dynamic accuracy	of display extension 0.01" ±5° (-10 dBm, 25°C With respect to -20 0 to -10 dB -10 to -20 dB	
	-50 to 60 dB -60 to -70 dB -70 to -80 dB -80 to 90 dB	±0.4° (40 MHz ≤ 1 ≤ 3.8 GHz) ±0.8° (3.8 GHz ≤ 1 ≤ 8.0 GHz) - ±1.5° ±4.0° ±8.0°
Group delay time characteristics	-60 to -70 dB -70 to -80 dB -80 to 90 dB	$\pm 0.8^{\circ}$ (3.8 GHz \leq f \leq 8.0 GHz) $\pm 1.5^{\circ}$ $\pm 4.0^{\circ}$
Group delay time characteristics Range	-60 to -70 dB -70 to -80 dB -80 to 90 dB	±0.8° (3.8 GHz ≤ f ≤ 8.0 GHz) ±1.5° ±4.0° ±8.0°
	-60 to -70 dB -70 to -80 dB -80 to 90 dB Calculated by the fo	$\pm 0.8^{\circ}$ (3.8 GHz ≤ f ≤ 8.0 GHz) $\pm 1.5^{\circ}$ $\pm 4.0^{\circ}$ $\pm 8.0^{\circ}$ Illowing expression: Δ 0 : Phase
Range	-60 to -70 dB -70 to -80 dB -80 to 90 dB Calculated by the fo $\Gamma = \frac{\Delta 0}{360 \times \Delta f}$	$\pm 0.8^{\circ}$ (3.8 GHz ≤ f ≤ 8.0 GHz) $\pm 1.5^{\circ}$ $\pm 4.0^{\circ}$ $\pm 8.0^{\circ}$ Illowing expression: Δ 0 : Phase
Range Measurement range	-60 to -70 dB -70 to -80 dB -80 to 90 dB Calculated by the fo $\Gamma = \frac{\Delta \text{ o}}{360 \times \Delta \text{ f}}$ 1 ps to 250 s 1 ps	$\pm 0.8^{\circ}$ (3.8 GHz ≤ f ≤ 8.0 GHz) $\pm 1.5^{\circ}$ $\pm 4.0^{\circ}$ $\pm 8.0^{\circ}$ Illowing expression: Δ 0 : Phase
Range Measurement range Group delay time resolution	-60 to -70 dB -70 to -80 dB -80 to 90 dB Calculated by the fo $\Gamma = \frac{\Delta o}{360 \times \Delta f}$ 1 ps to 250 s 1 ps is equal to Δf and σ	$\pm 0.8^{\circ} (3.8 \text{ GHz} \le \text{f} \le 8.0 \text{ GHz})$ $\pm 1.5^{\circ}$ $\pm 4.0^{\circ}$ $\pm 8.0^{\circ}$ $100 \text{ Illowing expression:}$ $\Delta \sigma: \text{ Phase}$ $\Delta \text{ f: Aperture frequency (Hz)}$ $\tan \text{be set to A} \times 2\% \text{ to A} \times 100\% \text{ for ha resolution of A} \times 2\%.$ 0 and points -1

Specifications -

Signal Source Characteristics

Measurement frequency					
Range	40MHz to 8.0 GHz				
Set resolution	1 Hz				
Measurement resolution	±0.005 ppm ±20 ppm (25°C ±5°C)				
Accuracy					
Stability	±5 ppm (25°C ±5°C)				
Output level					
(40 MHz to 3.8 GHz)	T	уре А	Type B	Type C	
Range	nge +17 to -8 dBm +7 to -18 dBm +10 to -15 dBm solution 0.01 dB ±0.5 dB (50 MHz, 0dBm, 25°C ±5°C)				
Resolution					
Accuracy					
Linearity					
15.70076000M		±0.4 dB	+12 to -3 dBm	With respect	
	Type A	±0.7 dB	+17 to -8 dBm	to +7 dBm	
		±0.4 dB	+2 to -13 dBm	With respect	
	Type B	±0.7 dB	+7 to -18 dBm	to -3 dBm	
		±0.4 dB	+5 to -10 dBm	With respect	
	Type C	±0.7 dB	+10 to -15 dBm	to 0 dBm	
Flatness	2 0 dRn	-p (25°C ±5°C		10 0 00111	
ridiness	-	C, at test por			
Output level		evel fixed	t .		
(3.8 GHz to 8GHz)	_		Туре В	Туре С	
(3.0 GHZ (0 OGHZ)	Type A				
	-3 dBm or more -16 dBm or more -13 dBm or more				
Output impodence			-16 dBm or more	-13 dBm or more	
	50 ohm:		-16 dBm or more	-13 dBm or more	
Signal purity	50 ohm:	S			
Signal purity Harmonic distortion	50 ohm: ≤20 dBd	s at maximum	n output, 40 MHz to 3.8	GHz)	
Signal purity Harmonic distortion Non-harmonic spurious	50 ohm: ≤20 dBd ≤25 dBd	s (at maximum (at maximum	n output, 40 MHz to 3.8 n output, 40 MHz to 3.8	GHz)	
Signal purity Harmonic distortion	50 ohm: ≤20 dBc ≤25 dBc	(at maximum (at maximum to 20 log (f/4	n output, 40 MHz to 3.8 n output, 40 MHz to 3.8 0 MHz)	GHz) GHz)	
Signal purity Harmonic distortion Non-harmonic spurious Phase noise	50 ohm: ≤20 dBc ≤25 dBc	(at maximum (at maximum to 20 log (f/4	n output, 40 MHz to 3.8 n output, 40 MHz to 3.8	GHz) GHz)	
Signal purity Harmonic distortion Non-harmonic spurious Phase noise Sweep function	50 ohm: ≤20 dBc ≤25 dBc -85 dBc 10 kHz c	s (at maximum c (at maximum to 20 log (f/4 offset, 1 Hz ba	n output, 40 MHz to 3.8 n output, 40 MHz to 3.8 0 MHz) undwidth, at maximum (GHz) GHz)	
Non-harmonic spurious Phase noise Sweep function Sweep parameter	50 ohm: ≤20 dBc ≤25 dBc -85 dBc 10 kHz c	(at maximum (at maximum to 20 log (f/4	n output, 40 MHz to 3.8 n output, 40 MHz to 3.8 0 MHz) undwidth, at maximum (GHz) GHz)	
Signal purity Harmonic distortion Non-harmonic spurious Phase noise Sweep function Sweep parameter Maximum sweep range	≤20 dBd ≤25 dBd -85 dBd 10 kHz d	s (at maximum c (at maximum to 20 log (f/4 offset, 1 Hz ba	n output, 40 MHz to 3.8 n output, 40 MHz to 3.8 0 MHz) undwidth, at maximum (GHz) GHz)	
Signal purity Harmonic distortion Non-harmonic spurious Phase noise Sweep function Sweep parameter	≤20 dBc ≤25 dBc -85 dBc 10 kHz c	s (at maximum (at maximum to 20 log (f/4 offset, 1 Hz ba cy, signal leve	n output, 40 MHz to 3.8 n output, 40 MHz to 3.8 0 MHz) indwidth, at maximum o	GHz) GHz) output	
Signal purity Harmonic distortion Non-harmonic spurious Phase noise Sweep function Sweep parameter Maximum sweep range	50 ohm: ≤20 dBc ≤25 dBc -85 dBc 10 kHz c Frequen 40 MHz	s (at maximum (at maximum to 20 log (f/4 offset, 1 Hz ba cy, signal leve to 8.0 GHz	n output, 40 MHz to 3.8 n output, 40 MHz to 3.8 0 MHz) andwidth, at maximum o	GHz) GHz) putput Type C	
Signal purity Harmonic distortion Non-harmonic spurious Phase noise Sweep function Sweep parameter Maximum sweep range	50 ohm: ≤20 dBc ≤25 dBc -85 dBc 10 kHz c Frequen 40 MHz Ty +17 dBn	s (at maximum to (at maximum to 20 log (f/4 offset, 1 Hz ba cy, signal leve to 8.0 GHz rpe A n to -8 dBm	n output, 40 MHz to 3.8 n output, 40 MHz to 3.8 0 MHz) andwidth, at maximum of the total transfer of the transfer of transfer of the transfer of transfer of the transfer of trans	GHz) GHz) putput Type C +10 dBm to -15 dB	
Signal purity Harmonic distortion Non-harmonic spurious Phase noise Sweep function Sweep parameter Maximum sweep range Frequency	50 ohm: ≤20 dBc ≤25 dBc -85 dBc 10 kHz c Frequen 40 MHz Ty +17 dBn	s (at maximum to (at maximum to 20 log (f/4 offset, 1 Hz ba cy, signal leve to 8.0 GHz rpe A n to -8 dBm	n output, 40 MHz to 3.8 n output, 40 MHz to 3.8 0 MHz) andwidth, at maximum o	GHz) GHz) putput Type C +10 dBm to -15 dB	
Signal purity Harmonic distortion Non-harmonic spurious Phase noise Sweep function Sweep parameter Maximum sweep range Frequency Signal level	50 ohm: ≤20 dBc ≤25 dBc -85 dBc 10 kHz c Frequen 40 MHz Ty +17 dBm Linear/lc	s (at maximum to (at maximum to 20 log (f/4 offset, 1 Hz ba cy, signal leve to 8.0 GHz r/pe A n to -8 dBm og frequency s	n output, 40 MHz to 3.8 n output, 40 MHz to 3.8 0 MHz) andwidth, at maximum of the total transfer of the transfer of transfer of the transfer of transfer of the transfer of trans	GHz) GHz) putput Type C +10 dBm to -15 dB ary frequency	
Signal purity Harmonic distortion Non-harmonic spurious Phase noise Sweep function Sweep parameter Maximum sweep range Frequency Signal level	50 ohm: ≤20 dBc ≤25 dBc -85 dBc 10 kHz c Frequen 40 MHz Ty +17 dBn Linear/Ic sweep, I	s (at maximum to (at maximum to 20 log (f/4 offset, 1 Hz ba cy, signal leve to 8.0 GHz rpe A n to -8 dBm og frequency s evel sweep an	n output, 40 MHz to 3.8 n output, 40 MHz to 3.8 0 MHz) andwidth, at maximum of the total transfer of the total transfer of the total transfer of the total transfer of the tra	GHz) GHz) putput Type C +10 dBm to -15 dB ary frequency	
Signal purity Harmonic distortion Non-harmonic spurious Phase noise Sweep function Sweep parameter Maximum sweep range Frequency Signal level Sweep type	50 ohm: ≤20 dBc ≤25 dBc -85 dBc 10 kHz c Frequen 40 MHz Ty +17 dBn Linear/lc sweep, I 0.15 ms	s (at maximum to (at maximum to 20 log (f/4 offset, 1 Hz ba cy, signal leve to 8.0 GHz ree A n to -8 dBm og frequency s evel sweep an /point (with n	n output, 40 MHz to 3.8 n output, 40 MHz to 3.8 0 MHz) andwidth, at maximum of the total state of the total	GHz) GHz) putput Type C +10 dBm to -15 dB ary frequency	
Signal purity Harmonic distortion Non-harmonic spurious Phase noise Sweep function Sweep parameter Maximum sweep range Frequency Signal level Sweep type	50 ohm: ≤20 dBc ≤25 dBc -85 dBc 10 kHz c Frequen 40 MHz Ty +17 dBn Linear/lc sweep, I 0.15 ms 0.25 ms	s (at maximum to 20 log (f/4 offset, 1 Hz baccy, signal levent to 8.0 GHz repe A n to -8 dBm og frequency sevel sweep an r/point (with n	n output, 40 MHz to 3.8 n output, 40 MHz to 3.8 0 MHz) andwidth, at maximum of the second of the sec	GHz) GHz) Type C +10 dBm to -15 dB rary frequency /) sweep	
Signal purity Harmonic distortion Non-harmonic spurious Phase noise Sweep function Sweep parameter Maximum sweep range Frequency Signal level Sweep type	50 ohm: ≤20 dBc ≤25 dBc -85 dBc 10 kHz c Frequen 40 MHz 17 dBn Linear/lc sweep, I 0.15 ms 0.25 ms The min	s (at maximum to 20 log (f/4 offset, 1 Hz baccy, signal levent to 8.0 GHz repe A n to -8 dBm og frequency sevel sweep an r/point (with no r/point (with 2 imum sweep to	n output, 40 MHz to 3.8 n output, 40 MHz to 3.8 0 MHz) andwidth, at maximum of the second sec	Type C +10 dBm to -15 dB cary frequency /) sweep	
Signal purity Harmonic distortion Non-harmonic spurious Phase noise Sweep function Sweep parameter Maximum sweep range Frequency Signal level Sweep type	≤20 dBo ≤25 dBo -85 dBo 10 kHz o Frequen 40 MHz +17 dBn Linear/lo sweep, I 0.15 ms 0.25 ms The min format, 1	s (at maximum to 20 log (f/4 offset, 1 Hz ba cy, signal leve to 8.0 GHz rpe A n to -8 dBm og frequency s evel sweep ar //point (with n //point (with 2 imum sweep)	n output, 40 MHz to 3.8 n output, 40 MHz to 3.8 n output, 40 MHz to 3.8 0 MHz) andwidth, at maximum of the second	GHz) GHz) Type C +10 dBm to -15 dB rary frequency /) sweep o measurement per point,	
Signal purity Harmonic distortion Non-harmonic spurious Phase noise Sweep function Sweep parameter Maximum sweep range Frequency Signal level Sweep type	≤20 dBo ≤25 dBo -85 dBo 10 kHz o Frequen 40 MHz 17 dBn Linear/lo sweep, I 0.15 ms 0.25 ms The min format, 1 number	s (at maximum to 20 log (f/4 offset, 1 Hz ba cy, signal leve to 8.0 GHz rpe A n to -8 dBm og frequency s evel sweep an //point (with n //point (with 2 imum sweep)	n output, 40 MHz to 3.8 n output, 40 MHz to 3.8 n output, 40 MHz to 3.8 0 MHz) andwidth, at maximum of the second	GHz) GHz) Type C +10 dBm to -15 dB rary frequency // sweep o measurement per point, //idth.	
Signal purity Harmonic distortion Non-harmonic spurious Phase noise Sweep function Sweep parameter Maximum sweep range Frequency Signal level Sweep type Sweep time	50 ohm: ≤20 dBc ≤25 dBc -85 dBc 10 kHz c Frequen 40 MHz Ty +17 dBn Linear/Ic sweep, I 0.15 ms 0.25 ms The min format, 1 number 3, 6, 11,	to 20 log (f/4 offset, 1 Hz baccy, signal level to 8.0 GHz repe A n to -8 dBm og frequency sevel sweep an r/point (with no r/point (with 2 dimum sweep) type of error of of measurement 21, 51, 101,	Type B +7 dBm to -18 dBm sweep, partial and arbitrat GCW (single frequency ormalized calibration) time differs according to correction, sweep width ent points and IF bandw	Type C +10 dBm to -15 dB rary frequency // sweep o measurement per point, //idth. 1, or 1201 points	
Signal purity Harmonic distortion Non-harmonic spurious Phase noise Sweep function Sweep parameter Maximum sweep range Frequency Signal level Sweep type Sweep time	50 ohm: ≤20 dBc ≤25 dBc -85 dBc 10 kHz c Frequen 40 MHz Ty +17 dBn Linear/Ic sweep, I 0.15 ms 0.25 ms The min format, 1 number 3, 6, 11,	to 20 log (f/4 offset, 1 Hz baccy, signal level to 8.0 GHz re A n to -8 dBm og frequency sevel sweep an repoint (with not) repoint (with not) repoint (with 2 repoint (with 2 repoint (with 2 repoint (with 2 repoint (with 3	Type B +7 dBm to -18 dBm sweep, partial and arbitrat GCW (single frequency ormalized calibration) time differs according to correction, sweep width ent points and IF bandw 201, 301, 401, 601, 801	Type C +10 dBm to -15 dB rary frequency // sweep o measurement per point, //idth. 1, or 1201 points	
Signal purity Harmonic distortion Non-harmonic spurious Phase noise Sweep function Sweep parameter Maximum sweep range Frequency Signal level Sweep type Sweep time Measurement point Sweep trigger	≤20 dBo ≤25 dBo −85 dBo 10 kHz of 1	to 20 log (f/4 offset, 1 Hz baccy, signal level to 8.0 GHz re A n to -8 dBm og frequency sevel sweep an repoint (with not) repoint (with not) repoint (with 2 repoint (with 2 repoint (with 2 repoint (with 2 repoint (with 3	Type B +7 dBm to -18 dBm sweep, partial and arbitrat GCW (single frequency ormalized calibration) time differs according to correction, sweep width ent points and IF bandw 201, 301, 401, 601, 801	Type C +10 dBm to -15 dB rary frequency // sweep o measurement per point, //idth. 1, or 1201 points	
Signal purity Harmonic distortion Non-harmonic spurious Phase noise Sweep function Sweep parameter Maximum sweep range Frequency Signal level Sweep type Sweep time Measurement point	≤20 dBo ≤25 dBo -85 dBo 10 kHz o Frequen 40 MHz 17 dBn Linear/lo sweep, I 0.15 ms 0.25 ms The min format, 1 number 3, 6, 11, Either 'C can be s	is (at maximum to 20 log (f/4 offset, 1 Hz ba cy, signal leve to 8.0 GHz repe A n to -8 dBm og frequency s evel sweep an r/point (with n r/point (with 2 imum sweep) type of error of of measurem 21, 51, 101, ontinuous, ho elected.	Type B +7 dBm to -18 dBm sweep, partial and arbitrat GCW (single frequency ormalized calibration) time differs according to correction, sweep width ent points and IF bandw 201, 301, 401, 601, 801	Type C +10 dBm to -15 dB rary frequency // sweep o measurement per point, //idth. 1, or 1201 points sternal trigger*	
Signal purity Harmonic distortion Non-harmonic spurious Phase noise Sweep function Sweep parameter Maximum sweep range Frequency Signal level Sweep type Sweep time Measurement point Sweep trigger Sweep mode	≤20 dBo ≤25 dBo −85 dBc 10 kHz of Frequen 40 MHz Ty +17 dBn Linear/lo sweep, I 0.15 ms 0.25 ms The min format, 1 number 3, 6, 11, Either Co can be s	s (at maximum to 20 log (f/4 offset, 1 Hz baccy, signal lever to 8.0 GHz of Feet to 8.0 G	Type B +7 dBm to -18 dBm sweep, partial and arbitrated CW (single frequency ormalized calibration) time differs according to correction, sweep width ent points and IF bandw 201, 301, 401, 601, 801 bld, single sweep* or "Ex	Type C +10 dBm to -15 dB rary frequency // sweep o measurement per point, //idth. 1, or 1201 points sternal trigger*	
Signal purity Harmonic distortion Non-harmonic spurious Phase noise Sweep function Sweep parameter Maximum sweep range Frequency Signal level Sweep type Sweep time Measurement point Sweep trigger Sweep mode	≤20 dBo ≤25 dBo -85 dBo 10 kHz o Frequen 40 MHz Ty +17 dBn Linear/lo sweep, I 0.15 ms 0.25 ms The min format, 1 number 3, 6, 11, Either "C can be s Sweeps frequence	is (at maximum to 20 log (f/4 offset, 1 Hz ba cy, signal leve to 8.0 GHz re A n to -8 dBm og frequency s evel sweep an repoint (with n repoint (with 2 imum sweep) type of error of of measurem 21, 51, 101, continuous, ho elected.	Type B +7 dBm to -18 dBm sweep, partial and arbitrated CW (single frequency ormalized calibration) time differs according to correction, sweep width ent points and IF bandw 201, 301, 401, 601, 801 bld, single sweep* or "Ex	Type C +10 dBm to -15 dB rary frequency // sweep o measurement per point, //idth. 1, or 1201 points sternal trigger*	

R3766H/3767H Series

Test port Characteristics

Test port	25°C ±5°C			
Load matching	18 dB	40 MHz	to 2.6 GHz	
	16 dB	2.6 GHz	to 3.8 GHz	
	14 dB	14 dB 3.8 GHz to 8.0 GHz		
Directivity	25°C ±5°C			
	30 dB 40 MHz to		to 2.6 GHz	
	26 dB	2.6 GHz to 3.8 GHz		
	22 dB	3.8 GHz	to 8.0 GHz	
Crosstalk	Types A and B		Type C	
	90 dB (40 MHz t	90 dB (40 MHz to 3.8 GHz)		
	80 dB (3.8 GHz to 5.0 GHz)		85 dB (2.6 GHz to 3.8 GHz)	
	70 dB (5.0 GHz to 8.0 GHz)		70 dB (3.8 MHz to 5.8 GHz)	
	70 db (5.0 dhz i	0.0 GHZ)	60 dB (5.0 GHz to 8.0 GHz)	
Connector	Type N (f), 50 ohm	Type N (f), 50 ohms		
Noise level	With respect tp -20 test board	0 dB below maximum input level of		
	-90 dB	3 kHz ba	ndwidth	
	-100 dB	10 kHz b	andwidth	
Maximum input level	Types A a	nd B	Type C	
	0 dBm		+15 dBm (40 MHz to 3.8 GHz)	
			+12 dB (3.8 GHz to 8 GHz)	
Input burning level	+21 dBm, ±30 VDC			
Maximum port bias	±30 VDC, 0.5 A (typ	±30 VDC, 0.5 A (type C only)		

Error Correction Function

Normalized	Corrects frequency response (amplitude and phase) at transmission and reflection measurement.
1-port calibration	Corrects errors due to directivity, frequency response and source matching at reflection measurement. (For error correction, short/open/load calibration tools are required.)
2-port calibration	Corrects errors due to directivity, frequency response, source matching, load matching, and isolation at transmission and reflection measurement. (Type C only)
Data averaging	Averages data (vector value) for each sweep. Average factor can be set to 2 to 999.
Data smoothing	Obtains moving average between adjacent measurement points.
Electrical length correction	Adds measured phase and group delay time and equivalent electrical length or delay time.
Phase offset correction	Adds measured phase and a constant phase offset.
Correction by frequency interpolation	In frequency interpolation mode calibration, calculates error coefficient even when frequency and number of horizontal axis points are changed. Changes in frequency range (start/stop) are applied for the frequency range at initial calibration.

Connection of External Equipment

External display signal	15 pin D-SUB connector (VGA)
GPIB data output & remote control	Conforms to IEEE488.
Parallel I/O	TTL level, 8 bit output (2 ports) 4 bit input and output (2 ports)
Serial I/O	Conforms to RS232.
Keyboard I/O	Conforms to IBM PC-AT.
External reference	Input frequency range: 1, 2, 5, and 10 MHz ±10 ppm
frequency input	0 dBm (50 ohms) or less
Probe power	±15 V ±0.5 V, 300mA

Display Unit

R3766H series	
Display unit	Fluorescent character display tube, green
Resolution	256 × 64 dots
Display mode	Character display, 32 lines × 8 characters
R3767H series	
Display unit	7.8 inch TFT color LCD
Resolution	640 × 480 dots
Display mode	Log/linear Cartesian coordinate, polar coordinate and Smith
	chart (impedance/admittance display)
Display format	Single channel
	2 channels (Overlapped display, separated display)
	4 channels (Separated display)
Measurement condition	Start/stop, center/span, scale/DIV reference level, marker
display	value, soft key functions, warning messages
Reference line position	Top (100%) to bottom (0%) of vertical-axis memory
Auto scale	Sets reference value and scale so that measured trace be
	displayed in the best form.
Brightness	Backlight can be turned ON or OFF.

Marker Function (R3767H only)

Marker display	Marker reading can be converted into display value corresponding to each measurement format.		
Multi marker	10 markers can be set independently for each channel.		
Delta marker	Each of 10 delta markers can be specified as reference marker and delta value between markers can be measured.		
Marker couple	Markers of each channel can be set in coupled or independent manner.		
Analysis of specified section	Marker search for section specified with Δ marker can be performed.		
MRK search	MAX search, MIN search, and NEXT search		
Marker tracking	Search operation for each sweep.		
Target search	Calculates bandwidth, center frequency and Q for -X dB point. Frequency for phase 0° and frequency width of ±X° can be searched for.		
MRK→	$\begin{array}{c} MRK \! \to reference \; value, MRK \! \to START, MRK \! \to STOP, \\ MRK \! \to CENTER \end{array}$		
Limit line function			

Programming Function

BASIC controller function	The R3766H/3767H series and any other measuring instruments with GPIB interface can be controlled by means of standard
	controller function.
Built-in functions	High-speed analysis of measurement data is possible using
	built-in functions.
FDD function	Conforms to MS-DOS format
	Accommodates 3 modes (DD 720 kB, HD 1.2 MB/1.4 MB)

General Specifications

Operating environment	
When FDD is used	Temperature range : +5 to +40°C
	Humidity range: 80% or less (without condensation)
When FDD is not used	Temperature range : 0 to +50°C
	Humidity range: 80% or less (without condensation)
Storage environment	Storage temperature range : -20 to +60°C
Power voltage	100 to 120 VAC, 220 to 240 VAC, 48 to 66 Hz
	Automatic switching between 100 VAC and 200 VAC lines
Power consumption	300 VA or less
Dimension's	Approx. 424 (width) × 220 (height) × 400 (depth) mm
Weight	16 kg maximum (R3767H series)