

SDS2000X HD

SDS2104X HD - 100 MHz

SDS2204X HD - 200 MHz

SDS2354X HD - 350 MHz

(Upgradable to 500 MHz max.)

Content

✓ Vertical Resolution
✓ Differences Between 8-bit and 12-bit

PART ONE

01

Vertical Resolution

The Best Value In Electronic Test & Measurement

What's resolution?

SIGLENT SIGLENT

- Resolution refers to the ability of a device to build details
- Many mass-consumer products have resolution metrics
- Resolution has gradually improved as the next generation continues to roll out

iPhone

Original display becomes retina display

Digital Camera

3 Megapixels become 15 Megapixels

Television

Standard definition TV becomes HDTV

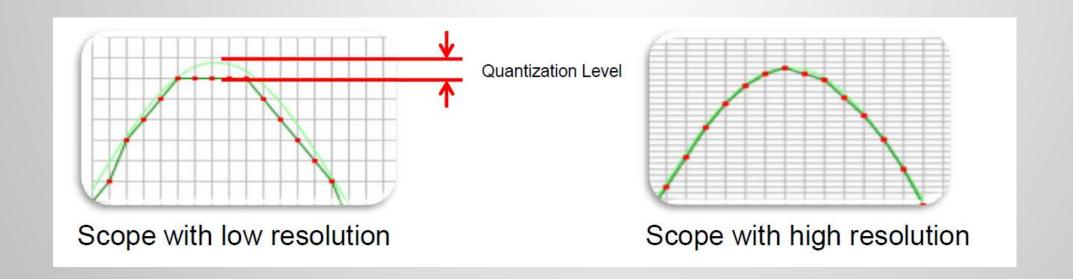
4X

5X

6X

Oscilloscope resolution?

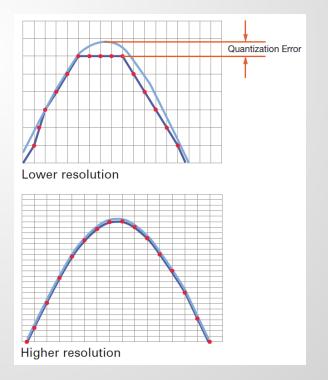
- The oscilloscope's ADC bits characterize the oscilloscope's signal resolution
- High resolution means the oscilloscope can display signal details in finer detail and make more precise measurements
- The Siglent SDS2000X HD high-resolution oscilloscope is a next-generation oscilloscope using a 12bit ADC, which is 16 times the signal resolution capability of a traditional 8bit oscilloscope


16X

12-bit ADCs provides 16 times the resolution of 8-bit ADCs

ADC Resolution	Number of Steps	Dynamic Range
8	256	48 dB
12	4096	72 dB

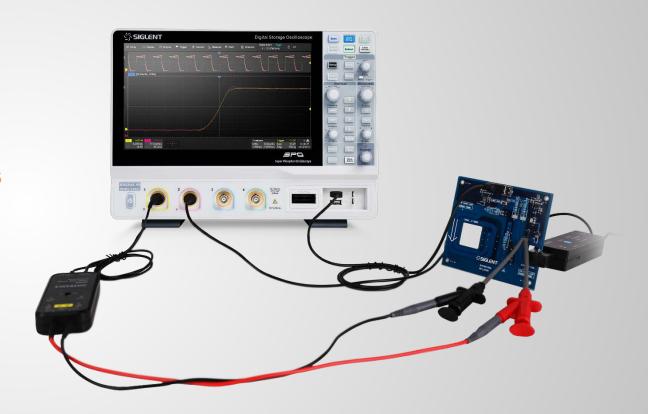
- ADC Dynamic Range = $20 \log_{10} (2^{N}) dB (ideal)$
- Available Quantization Levels = 2 N bits of Resolution
- DC Gain accuracy is +/- 0.5% (12-Bit) vs. +/- 1.5 2.0% (8-Bit)


Highest Resolution Provides Small Voltage Step Size

12-bit resolution allows detection of smaller signal variations

Full Scale	Smallest Voltage Step		
	8-bit	12-bit	
80 V	312.5 mV	19.5 mV	
40 V	156.2 mV	9.76 mV	
20 V	78.1 mV	4.88 mV	
8 V	31.3 mV	1.95 mV	
4 V	15.6 mV	976 μV	
1.6 V	6.3 mV	390 μV	
800 mV	3.1 mV	195 μV	
400 mV	1.56 mV	97.6 μV	
160 mV	625 μV	39 μV	
80 mV	313 μV	19.5 μV	
40 mV	156 μV	9.76 μV	
16 mV	62.5 μV	3.9 μV	
8 mV	31.2 μV	1.95 μV	

When measuring an 8 V signal, the smallest detectable voltage variation is 1.95 mV, compared with 31.3 mV on an 8-bit ADC.

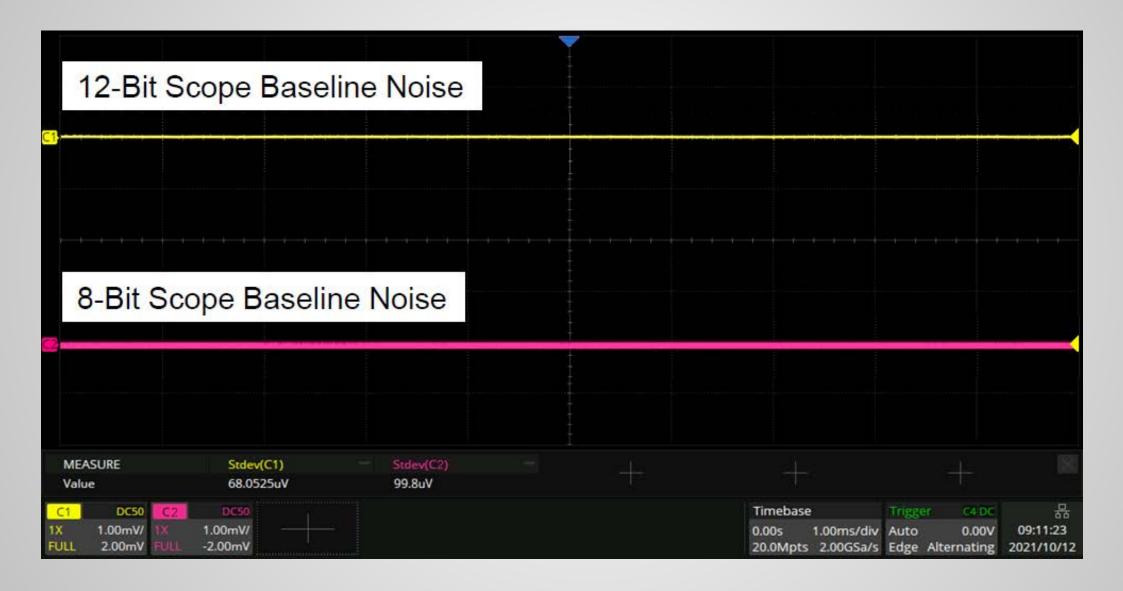


Quantization levels: 16 times more for 12-bit scopes

12-bit high resolution Oscilloscope

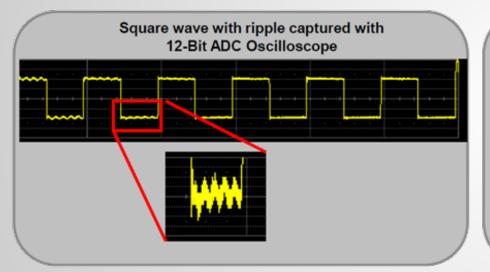
- Guaranteed high accuracy:
- High sampling rate 12-bit ADCs
- lower noise floor
- The resolution accuracy is more than 16 times higher than that of the 8-bit oscilloscope in the current oscilloscope market
- More "cleaner", "clearer" waveform display
- Viewing more signal details
- More accurate waveform measurements

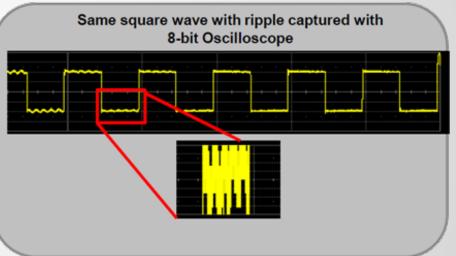
PART TWO


02

Differences Between 8-bit and 12-bit

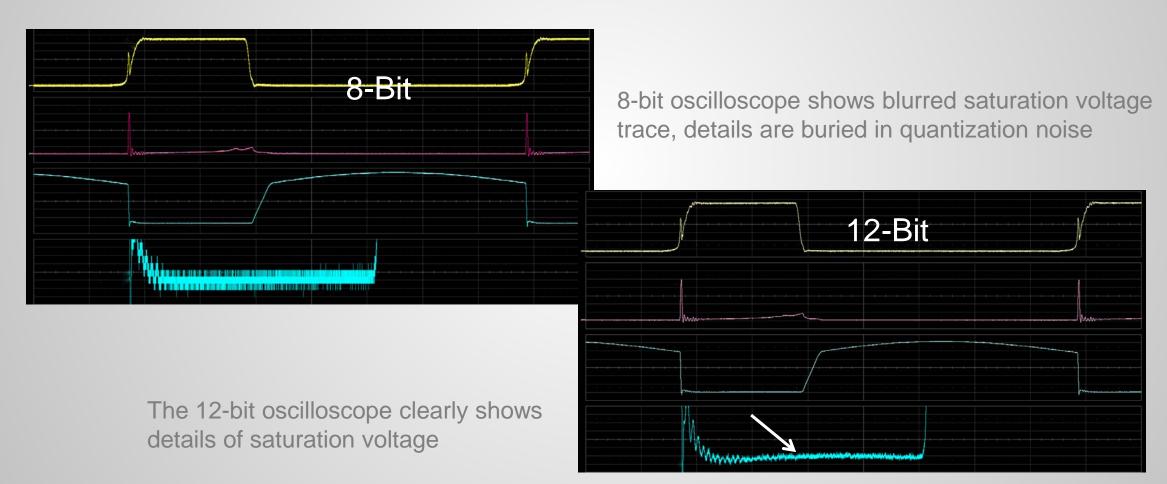
The Best Value In Electronic Test & Measurement


Lower Baseline Noise



ADC Resolution – Comparison 12-bit vs. 8-bit

Waveform details become more visible, quantization noise is reduced, and measurement accuracy improves with additional vertical bits


High resolution allows ripple signal to be seen above the noise

Ripple hidden in noise of the signal

Viewing more signal details

The figure below shows the MOSFET signals in a switching power supply test application Users needs to see VDS saturation voltage drop

PART THREE

<u>03</u>

Brief Introduction

The Best Value In Electronic Test & Measurement

SDS2000X HD High Resolution Oscilloscope

- 12-bit ADC resolution, enhanced resolution to 15 bit
- 100 MHz, 200 MHz, 350 MHz (upgradable to 500 MHz) models
- Front ends with 70 μVrms noise floor @ 500 MHz bandwidth and 0.5% DC gain accuracy
- Deep Record Length 0f 200 Mpts
- Large 10.1" TFT-LCD display
- Capacitive touch screen supports multi-touch gestures
- Automatic measurements on 50+ parameters
- Search & Navigate
- Segmented acquisition (Sequence) mode
- History-Waveform playback
- MSO function
- Bode Plot
- Built-in web server supports remote control
- FFT-2 Mpts
- Power analysis
- Serial bus triggering and decoder

SDS2000X HD Main Specs

Model	Bandwidth	Channel	Sampling Rate	Memory Depth	Screen
SDS2104X HD	100 MHz	4	2 GSa/s	200 Mpts	
SDS2204X HD	200 MHz	4	2 GSa/s	200 Mpts	10.1 inch Touch Screen
SDS2354X HD	350 MHz	4	2 GSa/s	200 Mpts	

10.1" large screen display with multi-touch


- The touch screen greatly facilitates the following operations:
- Channel settings
- Trigger settings
- Math
- Parameter measurement
- Advanced multi-touch display
- Stretch zoom operation
- Finger drag

Zone Trigger

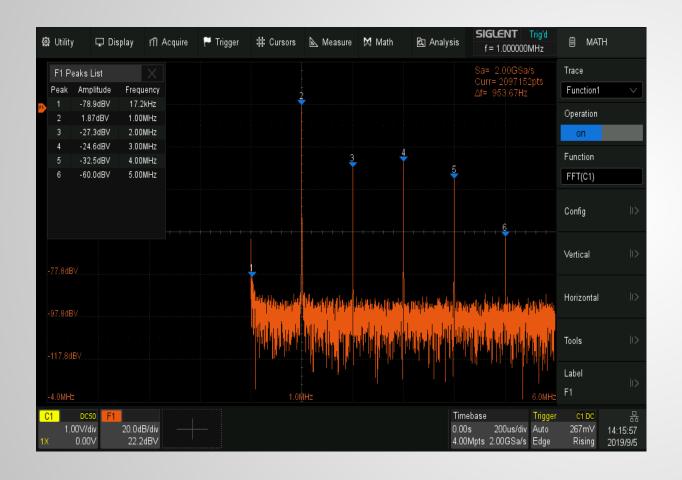
Quickly define trigger zones and isolate faults using the touch screen



- Traditional trigger types can take time to configure for complex trigger conditions
- With Zone Triggering, simply draw a zone and select Intersect or Not Intersect

Advanced Math Functions

Calculate power, energy, and more using the powerful equation editor


- No differential probe?

 No problem. Simply use the subtract operator so simulate a differential circuit
- Multiple kinds of operators, including derivative and integral
- Formula editor for advanced modifications of signals

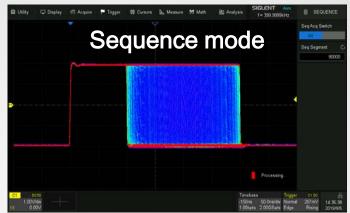
Hardware Accelerated FFT

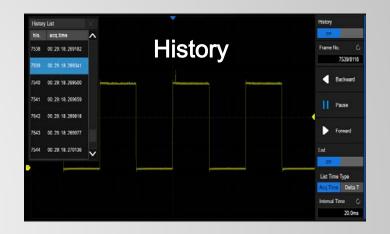
High frequency resolution with fast refresh rate

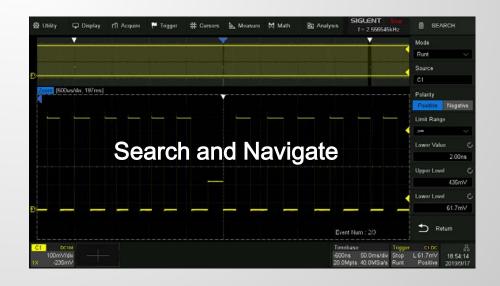
- Up to 2 M FFT points provides high frequency resolution with fast refresh rate.
- A variety of window functions adapt to different spectrum measurement needs.
- Three modes (Normal, Average and Max hold) can satisfy different requirements for observing the power spectrum.
- Auto peak detection and markers are supported.

Powerful debugging tools

Segmented memory


- Save memory
- Up to 80,000 segments
- Interval between segments as small as 2 μs


Background running History


- Serial Decode, Zoom, and cursors measurements can be used.
- Records up to 80,000 triggered waveforms.

Search and Navigate

- Easily find events within a record and history based on user specified trigger conditions.
- Useful in zoom view

Power Analysis and Bode Plot

Powerful tools for power engineers

- Provides a full suite of power measurements and analysis
- Improving the efficiency of measurement in switching power supplies and power device designs

Bode Plot (Std.)

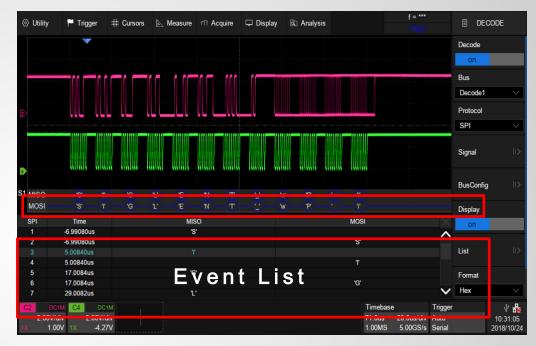
- Control the built-in waveform generator or any stand-alone SIGLENT SDG device
- Scan the amplitude and phase response over frequency
- Possible to replace expensive network analyzers in less demanding applications.

Power Analysis Function

Power Supply Control Loop Response with Bode Plot

Wide range of Serial Decoders

Help to debug in various industries


- Independent trigger and decoding.
 Increased flexibility.. Trigger and/or
 decode from any input source: 2/4 analog
 + 16 digital channels
- Export decoding event list as a CSV file type for offline analysis
- Return Format

Binary

Decimal

Hex

ASCII

Standard included Decoding:

I2C, SPI Embedded serial trigger and analyze UART Computer serial trigger and analyze CAN, LIN Automotive serial trigger and analyze

Optional Decoding:

MIL-STD 1553B

Manchester

SENT

CAN FD Automotive serial trigger and analyze FlexRay Automotive serial trigger and analyze Audio serial trigger and analyze

serial trigger and analyze

Automotive serial trigger and analyze

Serial trigger and analyze

MSO Function

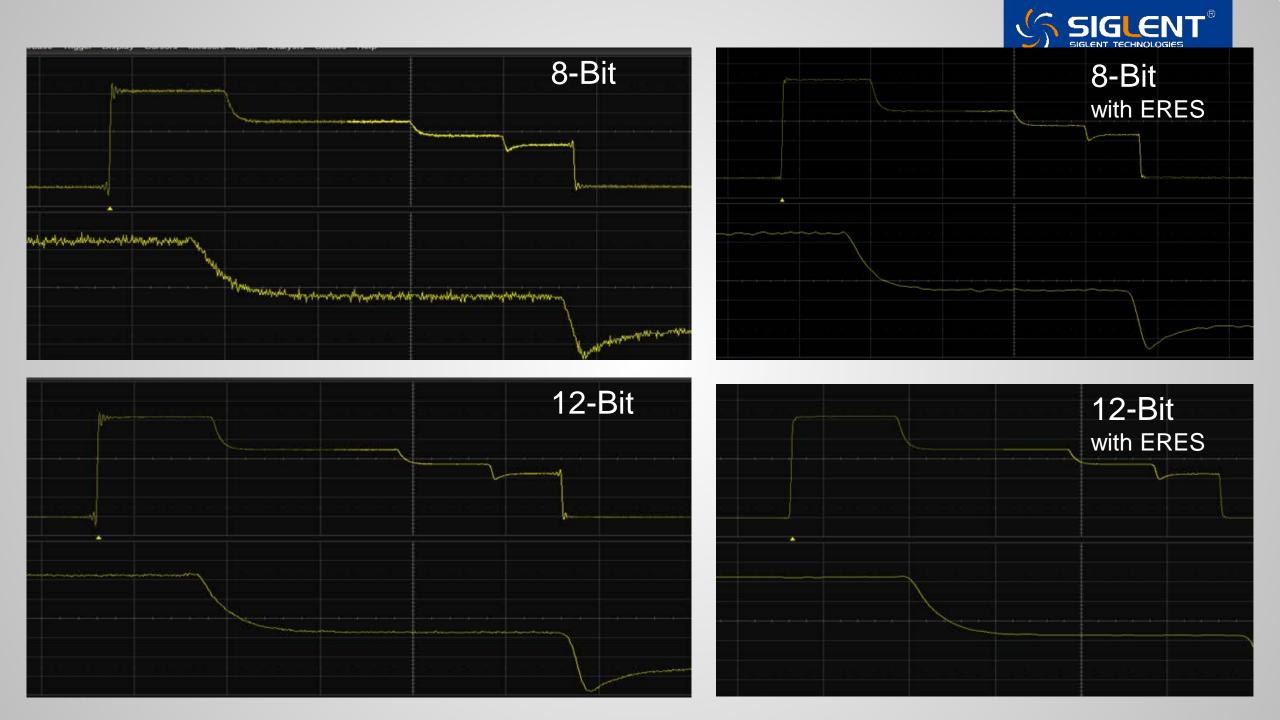
Mixed signal oscilloscope, solution for both digital and analog problems

- View digital and analog channels on one timebase
- Full trigger and decoding on all analog and digital channels
- 16 channels; maximum waveform capture rate up to 500 MSa/s; record length up to 50 Mpts
- User defined label names, channel groups, and more

Application field for a 12-bit resolution Oscillos cope?

- 1, Measuring High-precision sensors and actuation
- 2, Medical equipment (many signals in the medical field, such as EKG, ECG signal or EEG, EMG signal, etc., are very close to noise, so a high-precision oscilloscope is required.
- 3, Laser pulses (weak overshoots, dips, etc. in fast pulses)
- 4, RF signal/modulated signal (UWB/OFDM/IQ, etc. For IQ signal, the vector magnitude error "EVM" is an important measurement parameter)
- 5, Power measurement (noise overlay analysis)
- 6, Others... (when it is necessary to observe small signals appearing in large signals, such as phase-locked loops)

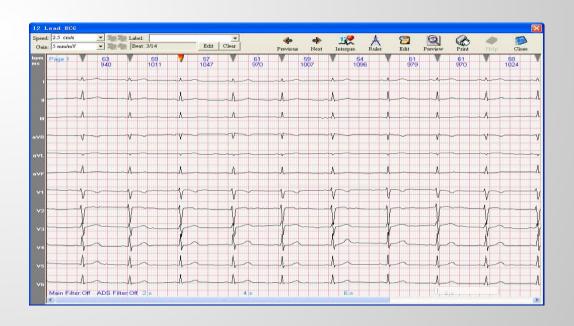
High Precision Sensor and Actuatior Measurement


- Sensors and Actuations are usually very accurate
- 8-bit oscilloscopes can only provide a maximum resolution of the order of 256
- If measurements beyond 256-order resolution are required, then a higher precision oscilloscope will be required

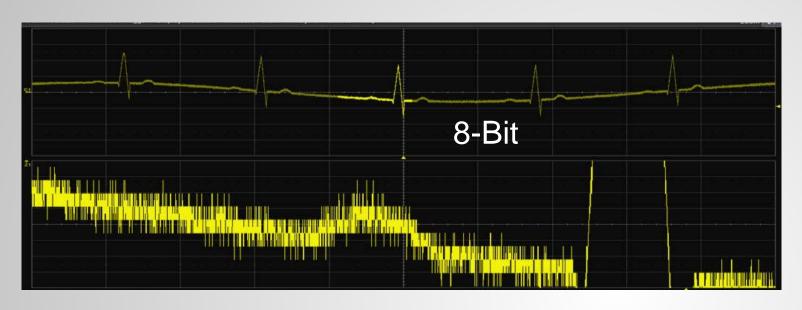
Example:

- Measurement of rotational speed (Revolutions PER minute, RPM)
- Height difference measurement
- discharge flow-through measurements

High Precision Sensor and Actuatior Measurement


Results:

- High-precision sensors and Actuatior require higher-resolution oscilloscopes
- Using an 8-bit oscilloscope to measure high-resolution sensors and actuatiors can be very noisy.
- For better results, a noise filter (ERES Enhanced Resolution Function) can be used.
- The ERES function sometimes filters out fast oscillations (or high frequency glitches) superimposed on the waveform.



- Medical measuring instruments must be able to detect very low amplitude measurement signals, such as ECG signals or EEG signals
- Since 8-bit oscilloscopes do not have enough dynamic range, it is difficult to accurately measure such signals

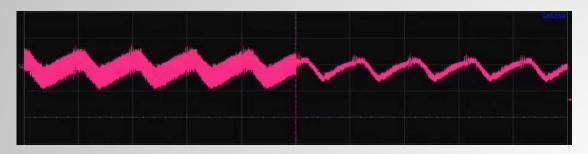
When testing ECG analog signals, the test difference between 8-bit oscilloscope and 12-bit oscilloscope

Results:

- Signals in medical fields such as electrocardiograms are very close to the noise floor of an 8-bit oscilloscope.
- Such weak signals can only be detected using the noise filter (ERES) function, but the signal quality is still poor.
- Important signal integrity issues such as overshoot or undershoot can only be measured by an oscilloscope using a 12-bit ADC

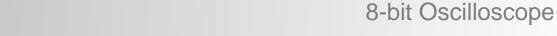
Audio Signal Measurement

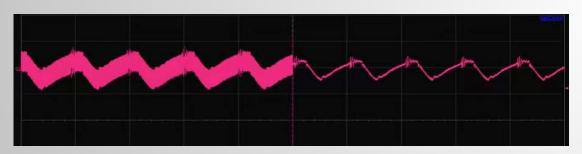
Power measurement

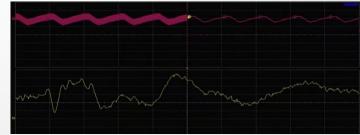


- Power measurement mainly includes the measurement of two parameters
- Measurement of current
- Voltage measurement

- The swing range of the measured value is usually very large and it must be accurate enough to observe small voltage or current changes
- It requires a for a long time to collect data, because it must ensure that at least one power cycle signal is collected, so the test instrument needs to have a deep acquisition memory depth




Power measurement



property of the hope for the form of the f

Switching power supplies are widely used due to their high efficiency, low cost, and small size.

The figure shows the output of the switching power supply when the load produces a small step change

12-bit Oscilloscope

The 8-bit oscilloscope can measure the step change of the voltage output but only the 12-bit oscilloscope can clearly display the details of the fluctuation superimposed on the voltage.

Power measurement

Results:

- Use a 12-bit high-precision oscilloscope to capture some important undershoot or overshoot Power calculations (voltage x current) will benefit even more from high-precision oscilloscope measurements.
- 8-bit voltage x 8-bit current = 256 Points x 256 Points = 65,536 Points
- 12-bit voltage x 12-bit current = 4096 Points x 4096 Points = 16,777,216 Points
- Small-amplitude ripple can only be captured with a high-precision oscilloscope
- Only using the ERES function to enhance the resolution will also filter out some high-frequency oscillations or overshoots.

PART FOUR

04

Comparison

The Best Value In Electronic Test & Measurement

SDS2000X HD

SDS2000X Plus

Model	Siglent SDS2000X HD		Siglent SDS2000X Plus	
Bandwidth	100/200/350 MHz	√	100/200/350 MHz	√
Vertical Resolution	12-bit	√	8-bit	
Average	Hardware based	√	Only supported in Math	Х
Analog Channel	4	X	2/4	√
Sampling rate	2 Gsa/s	√	2 Gsa/s	√
Memory Depth	200 Mpts	√	200 Mpts	√
Wavefrom Capture Rate	100,000 wfm/s normal mode	X	120,000 wfm/s normal mode	√
ERES	ERES 3-bit , hardware based	√	ERES 3-bit, only supported in Math	X
Vertical Scale	1 Mohm: 500 uV/div ~ 10 V/div 50 ohm: 500 uV/div ~ 1 V/div	√	1 Mohm: 500 uV/div ~ 10 V/div 50 ohm: 500uV/div ~ 1 V/div	√
DC Gain Accuracy	0.5mV/div ~ 4.95mV/div: ±1.5%; 5mV/div ~ 10V/div: ±0.5%	√	≤ 3.0%	X
Time base Accuracy	±2ppm initial; ±0.5ppm 1st year aging; ±3ppm 20-year aging	4	±1ppm initial; ±1ppm 1st year aging; ±3.5ppm 10-year aging	X
Nose floor	70 uVrms @ 500 MHz	1	80 uVrms @ 500 MHz	
SFDR	≥ 45 dBc	√	≥40 dBc	X
CH to CH Isolation (@50Ω)	> 60 dBc, < 500MHz > 70 dBc, < 350MHz	√	DC ~ 100 MHz: >40 dB 100 MHz ~ BW: ≥34 dB	X
Trigger types	Edge, Slope, Pulse, Window, Runt, Interval, Dropout, Pattern, Video, Qualified, Nth edge, Delay, Setup/Hold time, Serial	√	Edge, Slope, Pulse, Window, Runt, Interval, Dropout, Pattern, Video and Serial	
Serial trigger and decode	Standard: I2C, SPI, UART, CAN, LIN Optional: CAN FD, FlexRay, I2S, MIL-STD- 1553B, SENT, Manchester(decode only)	√	Standard: I2C, SPI, UART, CAN, LIN Optional: CAN FD, FlexRay, I2S, MIL-STD- 1553B, SENT, Manchester(decode only)	
Sequence	Up to 80,000 segments	x	V Up to 90,000 segments	
History	Up to 80,000 frames	X	X Up to 90,000 frames	
Display	10.1" touch screen, 1024*600	√	10.1" touch screen, 1024*600	√

	Siglent SDS2000X HD	R&S RTB2000	Keysight MSO/DSOX2000A	Tektronix MSO/DPO2000B
Model				
Bandwidth	100/200/350 MHz	70/100/200/300 MHz	70/100/200 MHz	70/100/200 MHz
Vertical Resolution	12-bit	10-bit	8-bit	8-bit
HiRes/ERES	ERES 3-bit , hardware based	HiRes 6-bit	-	-
Analog channel	4	2/4	2/4	2/4
Sampling rate	2 Gsa/s	2.5 Gsa/s	2 Gsa/s	1 GSa/s
Memory Depth	200 Mpts	20 Mpts	1 Mpts	1 Mpts
Wavefrom Capture Rate	100,000 wfm/s (normal mode), 400,000 wfm/s (sequence mode)	50,000 wfm/s (normal mode)	200,000 wfm/s	5,000 wfm/s
Vertical Scale	1 Mohm: 500 uV/div ~ 10 V/div 50 ohm: 500 uV/div ~ 1 V/div	1 mV/div to 5 V/div	1 MΩ: 1 mV/div ~ 5V/div	2 mV/div ~ 5 V/div
DC Gain Accuracy	0.5mV/div ~ 4.95mV/div: ±1.5%; 5mV/div ~ 10V/div: ±0.5%	≤ 5 mV/div: ±2 % of full scale; > 5 mV/div: ±1.5 % of full scale	± 3% full scale (≥ 10 mV/div); ± 4% full scale (< 10 mV/div) 2	10 mV/div ~ 5V/div: ±3% 2 mV/div ~ 5mV/div: ±4%
Timebase Scale	1 ns/div ~ 1000 s/div; 0.5 ns/div ~ 1000 s/div (500 MHz)	1 ns/div and 500 s/div	5 ns/div to 50 s/div 2 ns/div to 50 s/div	2 ns ~ 100s (200 MHz) 4 ns ~ 100s (70/100 MHz)
Time base Accuracy	±2ppm initial; ±0.5ppm 1st year aging; ±3ppm 20-year aging	±2.5 ppm	25 ppm ± 5ppm per yaer(aging)	±25 ppm, at any ≥1 ms interval
Trigger Zone	Support	No	No	No
FFT points	2 Mpts	128 kpts	64 kpts	-
AWG/FG	25 MHz	25 MHz	20 MHz	No
Bode plot	Support	Option	No	No
Logic analyzer	16 digital channels, 500 MSa/s	16 digital channels, 1.25 GSa/s	8 digital channels	16 digital channels (MSO), 1GS/s
Counter	7 digits	6 digits	5 digits	No
Digital multimeter	Support	Support	No	No
Screen	10.1" touch screen, 1024*600	10.1" touch screen, 1280*800	8.5" WVGA color TFT LCD, 800*480	7" WQVGA color screen, 480*234

Thank You

The Best Value in Electronic Test & Measurement

Headquarters

SIGLENT TECHNOLOGIES CO., LTD.
Add: Blog No.4 & No.5, Antongda Industrial Zone, 3rd
Liuxian Road, Bao'an District, Shenzhen, 518101, China
Tel:+ 86 755 3688 7876

Fax:+ 86 755 3359 1582 sales@siglent.com int.siglent.com

NA

SIGLENT Technologies NA, Inc. Add: 6557 Cochran Rd Solon, Ohio

44139

Tel: 440-398-5800 Toll Free:877-515-5551 Fax: 440-399-1211 info@siglent.com

www.siglentna.com

Europe

SIGLENT TECHNOLOGIES GERMANY GmbH

Add: Staetzlinger Str. 70 86165 Augsburg, Germany

Tel: +49(0)-821-666 0 111 0 Fax: +49(0)-821-666 0 111 22

info-eu@siglent.com www.siglenteu.com