
DataSheet-2020.02

SDS2000X-E Series

Super Phosphor Oscilloscope

SDS2202X-E SDS2352X-E

Product overview

SIGLENT's new SDS2000X-E Series Super Phosphor Oscilloscopes are available in two bandwidths; 200 MHz and 350 MHz. They each have a maximum sampling rate of 2 GSa/s and a standard record length of 28 Mpts. The most commonly used functions can be accessed with its user-friendly one-button design.

The SDS2000X-E series employs a new generation of SPO technology. With its excellent signal fidelity, background noise is lower than similar products in the industry. It has a minimum vertical input range of 500 uV/div, an innovative digital trigger system with high sensitivity and low jitter, and a waveform capture rate of 400,000 frames/sec (sequence mode). It also employs a 256-level intensity grading display function and a color temperature display mode not found in other models in this class. Siglent's newest oscilloscope offering supports multiple powerful triggering modes including serial bus triggering and decoding. History waveform recording and sequential triggering allow for extended waveform records to be captured, stored, and analyzed. Also included is the deep memory FFT. This math function uses upto 1 M samples for the FFT calculation, providing the SDS2000X-E with very high frequency resolution. The hardware co-processor executes true fast measurement and math to all of 28M sample points so that there is minimal distortion on analysis. It also supports searching and navigating, on-screen Bode plot, 16 channel digital /MSO (optional), an external USB powered 25 MHz AWG function generator module (option), a USB WIFI adapter for wireless control and monitoring (option), and an embedded application that allows remote control via web browser. The features and high-performance of the SDS2000X-E oscilloscopes cannot be matched else anywhere at this price.

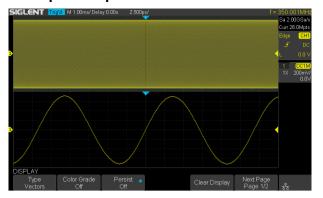
Key Features

- 200MHz, 350MHz bandwidth models
- Real-time sampling rate up to 2 GSa/s (1 GSa/s per channel, if both channels active)
- The newest generation of SPO technology
 - Waveform capture rate up to 110,000 wfm/s (normal mode), and 400,000 wfm/s (sequence mode)
 - Supports 256-level intensity grading and color display modes
 - Record length up to 28 Mpts
 - Digital trigger system

- Intelligent trigger: Edge, Slope, Pulse Width, Window, Runt, Interval, Time out (Dropout), Pattern
- Serial bus triggering and decoding (standard), supports protocols IIC, SPI, UART, CAN, LIN
- √ Video trigger, supports HDTV
- ↓ Low background noise with voltage scales from 500µV/div to 10V/div
- 10 types of one-button shortcuts, supports Auto Setup, Default, Cursors, Measure, Roll, History, Display/Persist, Clear Sweep, Zoom and Print
- Segmented acquisition (Sequence) mode, divides the maximum record length into multiple segments (up to 80,000), according to trigger conditions set by the user, with a very small dead time segment to capture qualifying events
- History waveform record (history) function (maximum recorded waveform length is 80,000 frames)
- Automatic measurement function for 38 parameters as well as Measurement Statistics, Zoom, Gating, Math, History and Reference functions
- 1 Mpt FFT
- Math and measurement functions use all sampled data points in memory (up to 28 Mpts)
- Math functions (FFT, addition, subtraction, multiplication, division, integration, differential, square root)
- Preset key can be customized for user settings or factory "defaults"
- ✓ Security Erase mode
- High Speed hardware based Pass/ Fail function
- 16 Digital channels (MSO) (option)
- Bode plot
- Search and navigate
- USB AWG module(option)
- USB WIFI adapter(option)
- Web Browser based control
- Large 7 inch TFT -LCD display with 800 * 480 resolution
- Multiple interface types: USB Host, USB Device (USB -TMC), LAN, Pass / Fail, Trigger Out
- Supports SCPI remote control commands
- VXI-11+SCPI, Telnet (port 5024) +SCPI and Socket (port 5025) +SCPI programming over LAN
- Supports web control and virtual instrument control panel for both PC and mobile terminals
- Web control update rate of up-to 10 times/s provides nearly real-time update rate
- Supports Multi-language display and embedded online help

Models and key Specification

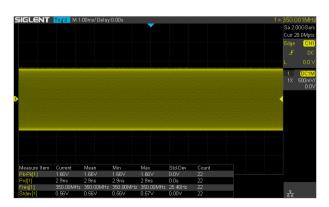
Model	SDS2202X-E	SDS2352X-E
Bandwidth	200 MHz	350 MHz
Sampling Rate (Max.)	2 GSa/s	
Channels	2+EXT	
Memory Depth (Max.)	14 Mpts/CH (not interleave mode) 28 Mpts/CH (interleave mode)	
Waveform Capture Rate (Max.)	110,000 wfm/s (normal mode), 400,000 wfm/s (sequence	mode)
Trigger Type	Edge, Slope, Pulse Width, Window, Runt, Interval, Dropout	, Pattern, Video
Serial Trigger and decoder (Standard)	IIC, SPI, UART, CAN, LIN	
16 Digital Channels (option)	Maximum waveform capture rate up to 1GSa/s, Record len	gth up to 14 Mpts/CH
USB AWG module (option)	One channel, 25 MHz, sample rate of 125 MHz, 16 (SAG1021I only)	kpts waveform memory sample size, isolated output
Bode plot	Minimum start frequency of 10 Hz, minimum scan band (dependent on Oscilloscope and AWG bandwidth), 500 ma	dwidth of 500 Hz, maximum scan bandwidth of 120 MHz ximum scan frequency points
USB WIFI adapter (option)	802.11b/g/n, WPA-PSK NOTE: To ensure compatibility, we recommend using only \$	SIGLENT WiFi accessories
I/O	USB Host, USB Device, LAN, Pass/Fail, Trigger Out, Sbus (S	Siglent MSO)
Probe (Std)	2 pcs passive probe PP215	2 pcs passive probe SP2035
Display	7 inch TFT-LCD (800 x 480 pixels)	
Weight	Without package 2.6 Kg; With package 3.8 Kg	


Function & Characteristics

7-inch TFT-LCD display and 10 one-button menus

- 7-inch TFT-LCD display with 800 * 480 resolution
- Most commonly used functions are accessible using 10 different one-button operation keys: Auto Setup, Default, Cursor, Measure, Roll, History, Persist, Clear Sweep, Zoom, Print.

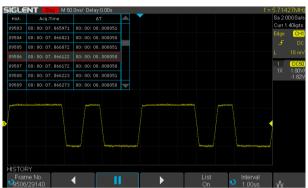
Maximum sample rate of 2 GSa/s, record Length of up to 28 Mpts


Using hardware-based Zoom technologies and max record length of up to 28 Mpts, users are able to oversample to capture for longer time periods at higher resolution and use the zoom feature to see more details within each signal.

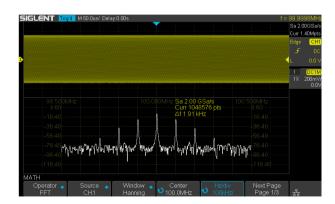
Serial Bus Decoding Function (Standard)

SDS2000X-E displays the decoding through the events list. Bus protocol information can be quickly and intuitively displayed in a tabular format.

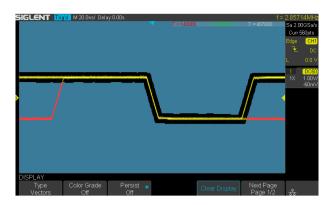
▼ True measurement to 28 M points


SDS2000X-E can apply automatic measurements on all sampled data points up to 28 Mpts. This ensures the accuracy of measurements while the math co-processor decreases measurement time and increases ease-of-use.

■ Waveform Capture Rate up to 400,000 wfm/s


With a waveform capture rate of up to 400,000 wfm/s (sequence mode), the oscilloscope can easily capture the unusual or low-probability events.

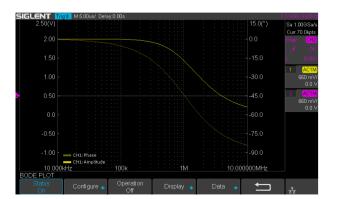
History Waveforms (History) Mode and Segmented Acquisition (Sequence)


Playback the latest triggered events using the history function. Segmented memory collection will store trigger events into multiple (Up to 80,000) memory segments, each segment will store triggered waveforms and timestamp of each frame.

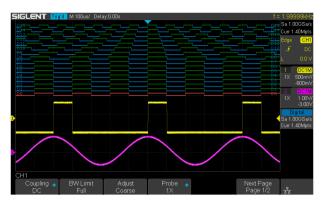
1 Mpoint FFT

The new math co-processor enables FFT analysis of incoming signals using up to 1 million samples per waveform. This provides high frequency resolution with a fast refresh rate. The FFT function also supports a variety of window functions so that it can adapt to different spectrum measurement needs.

Hardware-Based High Speed Pass/Fail function

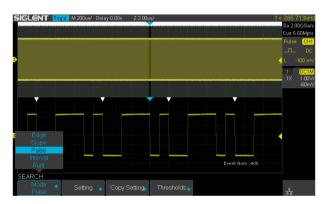

The SDS2000X-E utilizes a hardware-based Pass/Fail function, performing up to 40,000 Pass / Fail decisions each second. Easily generate user defined test templates provide trace mask comparison making it suitable for long-term signal monitoring or automated production line testing.

USB 25 MHz AWG Module (option)



The optional 25 MHz function/arbitrary waveform generator is operated from the USB host connection. Functions include Sine, Square, Ramp, Pulse, Noise, DC and 45 additional built-in waveforms. The arbitrary waveforms can be accessed and edited by the SIGLENT EasyWave PC software.

Bode Plot



16 Digital Channels/MSO (option)

16 digital channels enables users to acquire and trigger on digital input channels and view both digital and analog waveforms simultaneously with one instrument.

Search and Navigate

The SDS2000X-E can search events specified by the user in a frame. It can also navigate by time (delay position) and historical frames.

SDS2000X-E can control the USB AWG module or an independent SIGLENT SDG instrument, scan a circuits amplitude and phase frequency response, and display the data as a Bode Plot. It can also show the result lists, and export the data to a USB disk.

USB WIFI Adapter (option)

WiFi control of instrumentation can provide a convenient and safe method of configuring and collecting data. This new feature works with a SIGLENT approved WiFi adapter to provide wireless control and communications with SIGLENT SDS2000X-E scopes.

Real-time update screen in web page

With 100 Mbps LAN, the internal web page can update at a rate of up to 10 times/s, providing a nearly-real time update of waveform data and measurements. When viewed on a PC, the screen can be displayed in full screen mode. With this feature and a PC VGA interface, you can easily use a projector or other video display device to deliver the screen information to a larger audience.

Web control

With the new embedded web server, users can control the SDS2000X-E from a simple web page. This provides wonderful remote troubleshooting and monitoring capabilities. The web page has PC and mobile styles that include an embedded virtual control panel.

Complete Connectivity

SDS2000X -E supports USB Host, USB Device (USB -TMC), LAN, Pass/Fail and Trigger Out.

Specifications

Acquire System	
Sampling Rate	2 GSa/s (single channel), 1 GSa/s (two channels)
Memory Depth	Max 28 Mpts/Ch (single channel), 14 Mpts/Ch(two channels)
Peak Detect	1 nsec
Average	Averages: 4, 16, 32, 64, 128, 256, 512, 1024
Eres	Enhance bits: 0.5, 1.5, 2, 2.5, 3
Waveform interpolation	Sin(x)/x, Linear

Input	
Channels	2+EXT
Coupling	DC, AC, GND
Impedance	DC 1 M Ω : (1 M Ω ± 2%) (18 pF ± 2 pF) DC 50 Ω : 50 Ω ± 2%
Max. Input voltage	1 M Ω : \leq 400 Vpk (DC + Peak AC $<$ = 10 kHz) 50 Ω : \leq 5V rms
CH to CH Isolation	DC-Max BW :> 40 dB
Probe attenuation	0.1X, 0.2X, 0.5X, 1X, 2X, 5X, 10X1000X, 2000X, 5000X, 10000X, Custom

Vertical System	
Bandwidth (-3 dB)	350 MHz (SDS2352X-E) 200 MHz (SDS2202X-E)
Vertical Resolution	8-bit
Vertical Scale (Probe 1 X)	500 μV/div - 10 V/div (1-2-5 sequence)
	500 μV - 100 mV: ± 2 V
Offset Range (Probe 1 X)	102 mV- 1 V: ± 20 V
	1.02 V - 10 V: ± 200 V
Bandwidth Limit	20 MHz ± 40%
Channel Flatness (Inner 50 Ω)	DC - 60% (BW): ± 1 dB
Channel Flactiess (Tiller 50 52)	60% - 100% (BW): + 1 dB/-3 dB
Low Frequency Response (AC -3 dB)	≤ 2 Hz (at input BNC)
	$ST-DEV \le 0.5 \text{ division } (< 1 \text{ mV/div})$
Noise	ST-DEV ≤ 0.2 division (< 2 mV/div)
	ST-DEV ≤ 0.1 division (≥ 2 mV/div)
SFDR including harmonics	≥35 dB
DC Cain Acquire	\leq ± 3.0%: 5 mV/div-10 V/div
DC Gain Accuracy	≤ ± 4.0%: ≤ 2 mV/div
Offset Accuracy	± (1% * Offset + 1.5% * 8 * div + 2 mV): ≥2 mV/div
Offset Accuracy	± (1% * Offset + 1.5% * 8 * div + 500 uV): ≤1 mv/div
Digatima	Typical 1.0 ns (SDS2352X-E)
Risetime	Typical 1.8 ns (SDS2202X-E)

Horizontal System	
Timebase Scale	500 ps/div-100 s/div
Channel Skew	<100 ps
Waveform Capture Rate	Up to 110,000 wfm/s (normal mode), 400,000 wfm/s (sequence mode)
Intensity Grading	256 Levels
Display Format	Y-T, X-Y, Roll
Timebase Accuracy	±25 ppm
Roll Mode	50 ms/div-100 s/div (1-2-5 step)

Trigger System	
Trigger Mode	Auto, Normal, Single
Trigger Level	Internal: ±4.5 div from the center of the screen
	EXT: ±0.6 V
	EXT/5: ±3 V
Holdoff Range	80 ns - 1.5 s
Trigger Coupling	AC DC LFRJ HFRJ Noise RJ
	DC: Passes all components of the signal
Coupling Frequency Response	AC: Blocks DC components and attenuates signals below 8 Hz
coopg equee,	LFRJ: Blocks the DC component and attenuates the low-frequency components below 2 MHz
	HFRJ: Attenuates the high-frequency components above 1.2 MHz
	DC: Passes all components of the signal
Coupling Frequency Response (EXT)	AC: Blocks DC components and attenuates signals below 10 Hz
	LFRJ: Blocks the DC components and attenuates low-frequency components below 6 KHz
	HFRJ: Attenuates high-frequency components above 200 KHz
Trigger Accuracy (typical)	Internal: ±0.2 div
rigger recuracy (typicar)	EXT: ±0.4 div
	DC - Max BW 0.6 div
	EXT: 200 mVpp DC – 10 MHz
Trigger Sensitivity	300 mVpp 10 MHz - BW frequency (External 50 Ω)
	EXT/5: 1 Vpp DC – 10 MHz
	1.5 Vpp 10 MHz -BW frequency (External 50 Ω)
Trigger Jitter	< 100 ps
Trigger Displacement	Pre-Trigger: 0 - 100% Memory
	Delay Trigger: 0 to 10,000 div
Edge Trigger	
Slope	Rising, Falling, Rising&Falling
Source	All channels / EXT / (EXT/5) / AC Line
Slope Trigger	
Slope	Rising, Falling
LimitRange	<, >, <>, ><
Source	All channels
TimeRange	2 ns - 4.2 s
Resolution	1 ns

Pulse Trigger	
Polarity	+wid , -wid
Limit Range	<, >, <>, ><
Source	All channels
Pulse Range	2 ns - 4.2 s
Resolution	1 ns
Video Trigger	
Signal Standard	NTSC, PAL, 720p/50, 720p/60, 1080p/50, 1080p/60, 1080i/50, 1080i/60, Custom
Source	All channels
Sync	Any, Select
Trigger condition	Line, Field
Window Trigger	
Window Type	Absolute, Relative
Source	All channels
Interval Trigger	
Slope	Rising, Falling
Limit Range	<,>,<>,><
Source	All channels
Time Range	2 ns - 4.2 s
Resolution	1 ns
Dropout Trigger	
Timeout Type	Edge, State
Source	All channels
Slope	Rising, Falling
Time Range	2 ns - 4.2 s
Resolution	1 ns
Runt Trigger	
Polarity	+wid , -wid
Limit Range	<, >, <>, ><
Source	All channels
Time Range	2 ns - 4.2 s
Resolution	1 ns
Pattern Trigger	
Pattern Setting	Invalid, Low, High
Logic	AND, OR, NAND, NOR
Source	All channels
Limit Range	<, >, <>, ><
Time Range	2 ns - 4.2 s
Resolution	1 ns

Search	
Event	Edge, Slope, Pulse, Interval, Runt
Event Number	Y-T: 700 ROLL: No limitation Stop After ROLL: 700

Serial Trigger I2C Trigger Condition Start, Stop, Restart, No Ack, EEPROM, 7 bits Address & Data, 10 bits Address & Data, Data Length Source (SDA/SCL) All channels Data Format Hex Limit Range EEPROM: =, >, < EEPROM: 1 byte Data Length Addr & Data: 1-2 byte Data Length: 1-12 byte R/W bit Addr & Data: Read, Write, Do not care **SPI Trigger** Condition Data Source (CS/CL/Data) All channels Data Format Binary Data Length 4-96-bit Bit Value 0, 1, X Bit Order LSB, MSB **UART Trigger** Condition Start, Stop, Data, Parity Error Source (RX/TX) All channels Data Format Hex Limit Range =, >, < Data Length 1 byte Data Width 5, 6, 7, 8-bits Parity Check None, Odd, Even Stop Bit 1, 1.5, 2-bits Idle Level High, Low 600/1200/2400/4800/960019200/38400/57600/115200 bit/s Baud Rate (Selectable) 300-5000000 bit/s Baud Rate (Custom) **CAN Trigger** Condition Start Remote, ID, ID + Data, Error Source All channels ID STD (11 bit), EXT (29 bit) Data Format Data Length 1-2 byte **Baud Rate** 5 k/ 10 k/ 20 k/ 50k/ 100 k/ 125 k/ 250 k/ 500 k/ 800 k/ 1 M bit/s **LIN Trigger** Condition Break, Frame ID, ID+Data, Error Source All channels ID 1 byte Data Format Hex Data Length 1-2 byte Baud Rate (Selectable) 600/1200/2400/4800/9600/19200 bit/s

Baud Rate (Custom)

300 bit/s - 20 kbit/s

Serial Decoder	
Number of Decoders	2
I2C Decoder	
Signal	SCL, SDA
Address	7, 10 bits
Threshold	-4.5 - 4.5 div
List	1 - 7 lines
SPI Decoder	
Signal	SCL, MISO, MOSI, CS (2 channel scopes can only use 2 signal identifiers)
Edge Select	Rising, Falling
Idle Level	Low, High
Bit Order	MSB, LSB
Threshold	-4.5 - 4.5 div
List	1 - 7 lines
UART Decoder	
Signal	RX, TX
Data Width	5, 6, 7, 8-bits
Parity Check	None, Odd, Even
Stop Bit	1, 1.5, 2-bits
Idle Level	Low, High
Threshold	-4.5 - 4.5 div
List	1 - 7 lines
CAN Decoder	
Signal	CAN_H, CAN_L
Source	CAN_H, CAN_L, CAN_H - CAN_L
Threshold	-4.5 - 4.5 div
List	1 - 7 lines
LIN Decoder	
LIN Specification Package Revision	Ver 1.3, Ver 2.0
Threshold	-4.5 - 4.5 div
List	1 - 7 lines

+Dut Time difference between the 50% threshold of a rising edge to the 50% threshold of the next falling edge of the pulse -Dut Time difference between the 50% threshold of a falling edge to the 50% threshold of the next rising edge of the pulse Delay Time from the trigger to the first transition at the 50% crossing Time from the trigger to each rising edge at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is On, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to each rising edge at the 50% crossing in multiple frames (number = Count). Phase Phase difference between two edges FRR Time from the first rising edge of channel A to the following first rising edge of channel B FRF Time from the first rising edge of channel A to the following first falling edge of channel B FFR Time from the first falling edge of channel A to the following first falling edge of channel B LRR Time from the first falling edge of channel A to the following first falling edge of channel B Time from the first rising edge of channel A to the following first falling edge of channel B Time from the first rising edge of channel A to the following first falling edge of channel B Time from the first rising edge of channel A to the last rising edge of channel B Time from the first rising edge of channel A to the last rising edge of channel B	Measurement			
Measurement Range Screen or Sate region Measurement Parameters (38 Types) Measurement Parameters (38 Types) Many Mark Management Parameters (38 Types) Highest value in input waveform Pk - Pk Difference between maximum and minimum data values Ampl Ollerence between top and base in a bimodal signal, or between max and min in a singal mode signal Base Value of most probable higher state in a bimodal signal, or between max and min in a singal mode signal Wertical (Voltage) Sides Value of most probable higher state in a bimodal sweeform Mean Average of all data values Standard deviation of all idata values Cycle Standard deviation of all idata values in the first cycle Vertical (Voltage) Stdey Standard deviation of all idata values in the first cycle Vertical (Voltage) Stdey Root mean square of all idata values in the first cycle Vertical (Voltage) Stdey Root mean square of all idata values in the first cycle Vertical (Voltage) Stdey Root mean square of all idata values in the first cycle Vertical (Voltage) Stdey Root mean square of all idata values in the first cycle Vertical (Voltage) Cycle <td>Source</td> <td>All channels, A</td> <td>Il channels in Zoom, Math, All References, History</td>	Source	All channels, A	Il channels in Zoom, Math, All References, History	
Measurement Parameters (38 Types) Max Highest value in input weveform Mix Lowest value in input weveform Pk - Pk Difference between maximum and minimum data values Ampl Difference between maximum and minimum data values Ampl Difference between maximum and minimum data values Ampl Difference between top and base in a bimodal waveform Base Value of most probable higher state in a bimodal waveform Mean Average of data values Cmean Average of data values Cmean Average of data values Cmean Average of data values in the first cycle Comean Average of data values Cmean Average of data values Cmean Average of data values Cmean Average of data values Cmma Root mean square of all data values FPRE Overshoot after a falling edge; (max -top)/Amplitude FPRE Overshoot after a falling edge; (max -top)/Amplitude Roov Overshoot before a falling edge; (max -top)/Amplitude Roveles Roveles Time between the middle threshold points of two consecutive, like-polarity edges Freq Reciprocal of period 4Wild Width measured at 50% level and negative slope 4Wild Width measured at 50% level and negative slope 4Wild Width measured at 50% level and negative slope Average Duration of falling edge from 10-50% Field Time Duration of falling edge from 50-105% Field Time from the first rising edge of the last falling edge to the 50% threshold of the next falling edge of the public Delay Time from the first rising edge from 10-50% Average Prease Prease	Number of Measurements	Display 4 measurements at the same time. 5 measurements displayed in statistics table		
Max Highest value in input waveform	Measurement Range	Screen or Gate	e region	
Min Lovest value in input waveform Pk - Pk Difference between top and base in a bimodal signal, or between max and min in a singal mode signal Top Value of most probable lower state in a bimodal signal, or between max and min in a singal mode signal Top Value of most probable lower state in a bimodal waveform Base Value of most probable lower state in a bimodal waveform Mean Average of all data values Cmean Average of all data values Cstd Sandard deviation of all data values Cstd Sandard deviation of all data values Cmis Root mean square of all data values in the first cycle RNHS Root mean square of all data values in the first cycle Vertical (Voltage) Root mean square of all data values in the first cycle RNHS Root mean square of all data values in the first cycle RNHS Root mean square of all data values in the first cycle RNHS Root mean square of all data values in the first cycle RNHS Overshoot after a falling edge; (fixax -top)/Amplitude RPRE Overshoot before a falling edge; (fixax -top)/Amplitude RPRE Overshoot before a falling edge; (fixax -top)/Amplitude RPRE Responsible there in middle threshold points of two consecutive, like-polarity edges Responsible of the trigger point Responsible of the trigger point Responsible of the trigger point Responsible of the strigger point Responsible of the strigger point Responsible of the strigger point in the first rising edge to the sole in the first falling edge from 99-10% Responsible of the strigger point in the first rising edge to the sole in the first falling edge from 90-10% Time difference between the 50% threshold of a falling edge to the 50% threshold of the next falling edge of the pulse Delay Time from the first rising edge to the sole county. The from the trigger to the first transition at the 50% crossing TimeSpleted Wine Statistics Sole, it shows the time from the trigger to each rising edge of channel B that the following first falling edge of channel B RPR Time from the first falling edge of channel A to the following first falling edge of channel B	Measurement Parameters (38 Types)		
PK - Pk Difference between maximum and minimum data values		Max	Highest value in input waveform	
Ampl Difference between top and base in a bimodal signal, or between max and min in a singal mode signal Top Value of most probable higher state in a bimodal waveform Base Value of most probable lower state in a bimodal waveform Mean Average of all data values Cmean Average of ald ata values in the first cycle Vertical (Voltage) Sidev Standard deviation of all data values Csid Standard deviation of all data values in the first cycle Vertical (Voltage) Root mean square of all data values in the first cycle Root mean square of all data values in the first cycle FOV Overshoot after a falling edge; (max - top)/Amplitude FPSE Overshoot before a falling edge; (max - top)/Amplitude ROV Overshoot after a rising edge; (max - top)/Amplitude ROV Overshoot after a rising edge; (max - top)/Amplitude LeveligX The voltage value of the trigger point The voltage value of the trigger point FPSE Reciprocal of period Width measured at 50% level and positive slope Width measured at 50% level and negative slope Rise Time Duration of rising edge from 90-10% FPSE Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing Time afference between the 50% threshold of a rising edge to the 50% threshold of the next rising edge of the pulse Delay Time afference between the 50% threshold of a falling edge to the 50% threshold of the next rising edge of the pulse FPSE Time from the first rising edge of channel A to the following first rising edge at the 50% crossing. When Statistics is Off, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to each rising edge of channel A to the following first rising edge of channel B FPSE Time from the first falling edge of channel A to the following first rising edge of channel B FPSE Time from the first falling edge of channel A to the following first rising edge		Min	Lowest value in input waveform	
Top Value of most probable higher state in a bimodal waveform		Pk - Pk	Difference between maximum and minimum data values	
Base Value of most probable lower state in a bimodal waveform Mean Average of all data values Croean Average of data values in the first cycle Vertical (Voltage) Stodey Standard deviation of all data values Croean Average of data values Croean Standard deviation of all data values Croean Standard deviation of all data values Croean Root mean square of all data values Root Overshoot before a falling edge; (max -top)/Amplitude RRE Overshoot before a rising edge; (max -top)/Amplitude RRE Overshoot before a rising edge; (max -top)/Amplitude Level@X The voltage value of the trigger point Level@X The voltage value of the trigger point Level@X The voltage value of the trigger point Period Time between the middle threshold points of two consecutive, like-polarity edges Freq Reciprocal of period +Wid Width measured at 50% level and negative slope +Wid Width measured at 50% level and negative slope +Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of rising edge from 10-90% Fall Time Duration of rising edge from 90-10% Bwid Time from the first rising edge to the last falling edge to the 50% threshold of the next rising edge of the pulse -Dut Time difference between the 50% threshold of a falling edge to the 50% threshold of the next rising edge of the pulse Delay Time from the trigger to the first transition at the 50% crossing Time From the first rising edge of the specified Time From the first rising edge of channel he trigger to the last rising edge at the 50% crossing When Statistics is 00, it, shows the time from the trigger to last he 50% crossing in multiple friend (number = Counts (number = Coun		Ampl	Difference between top and base in a bimodal signal, or between max and min in a singal mode signal	
Mean		Тор	Value of most probable higher state in a bimodal waveform	
Cream		Base	Value of most probable lower state in a bimodal waveform	
Stdev Standard deviation of all data values		Mean	Average of all data values	
Cstd Standard deviation of all data values in the first cycle		Cmean	Average of data values in the first cycle	
VRMS Root mean square of all data values	Vertical (Voltage)	Stdev	Standard deviation of all data values	
Crms Root mean square of all data values in the first cycle		Cstd	Standard deviation of all data values in the first cycle	
FOV Overshoot after a falling edge; (base -min)/Amplitude FPRE Overshoot before a falling edge; (max -top)/Amplitude ROV Overshoot after a rising edge; (max -top)/Amplitude RPRE Overshoot before a rising edge; (base -min)/Amplitude Level@X The voltage value of the trigger point Period Time between the middle threshold points of two consecutive, like-polarity edges Freq Reciprocal of period +Wild Width measured at 50% level and positive slope +Wild Width measured at 50% level and positive slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Fall Time Duration of falling edge from 90-10% Fall Time Time fifference between the 50% threshold of a rising edge to the last rising edge at the 50% crossing +Dut Time difference between the 50% threshold of a falling edge to the 50% threshold of the next rising edge of the pulse Delay Time from the trigger to each rising edge to the 50% crossing Time@Level Phase Phase ifference between the 50% threshold of a falling edge to the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Off, it shows the time from the trigger to teach rising edge at the 50% crossing. Time from the first rising edge of channel A to the following first rising edge of channel B FRF Time from the first rising edge of channel A to the following first rising edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B FFF Time from the first rising edge of channel A to the following first falling edge of channel B FFF Time from the first rising edge of channel A to the following first falling edge of channel B FFF Time from the first rising edge of channel A to the following first falling edge of channel B FFF Time from the first rising edge of channel A to the following first falling edge of channel B FFF Time from the first rising edge of channel A to the following first falling edge of channel B FFF Time		VRMS	Root mean square of all data values	
FPRE Overshoot before a falling edge; (max -top)/Amplitude		Crms	Root mean square of all data values in the first cycle	
ROV Overshoot after a rising edge; (max -top)/Amplitude RPRE Overshoot before a rising edge; (base -min)/Amplitude Level@X The voltage value of the trigger point Period Time between the middle threshold points of two consecutive, like-polarity edges Freq Reciprocal of period +Wid Width measured at 50% level and positive slope -Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Time difference between the 50% threshold of a rising edge to the 50% threshold of the next falling edge of the pulse -Dut Time difference between the 50% threshold of a falling edge to the 50% threshold of the next rising edge of the pulse Delay Time from the trigger to the first transition at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge of channel B FRF Time from the first rising edge of channel A to the following first rising edge of channel B FRF Time from the first rising edge of channel A to the following first rising edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time f		FOV	Overshoot after a falling edge; (base -min)/Amplitude	
RPRE Overshoot before a rising edge; (base -min)/Amplitude Level@X The voltage value of the trigger point Period Time between the middle threshold points of two consecutive, like-polarity edges Freq Reciprocal of period +Wid Width measured at 50% level and positive slope -Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing -Dut Time difference between the 50% threshold of a rising edge to the 50% threshold of the next falling edge of the pulse -Dut Time difference between the 50% threshold of a falling edge to the 50% threshold of the next rising edge of the pulse Delay Time from the trigger to the first transition at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge of channel B FRF Time from the first rising edge of channel A to the following first rising edge of channel B FRF Time from the first rising edge of channel A to the following first rising edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the last rising		FPRE	Overshoot before a falling edge; (max -top)/Amplitude	
Level@X		ROV	Overshoot after a rising edge; (max -top)/Amplitude	
Period Time between the middle threshold points of two consecutive, like-polarity edges Freq Reciprocal of period +Wid Width measured at 50% level and positive slope -Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Time difference between the 50% threshold of a rising edge to the 50% threshold of the next falling edge of the pulse Delay Time from the trigger to the first transition at the 50% crossing Time@Level When Statistics is On, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to each rising edge at the 50% crossing in multiple frames (number = Count). Phase Phase difference between two edges FRR Time from the first rising edge of channel A to the following first rising edge of channel B FFF Time from the first falling edge of channel A to the following first rising edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B FFF Time from the first rising edge of channel A to the following first falling edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B FFF Time from the first rising edge of channel A to the following		RPRE	Overshoot before a rising edge; (base -min)/Amplitude	
Freq Reciprocal of period +Wid Width measured at 50% level and positive slope -Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Time difference between the 50% threshold of a rising edge to the 50% threshold of the next falling edge of the pulse -Dut Time difference between the 50% threshold of a falling edge to the 50% threshold of the next rising edge of the pulse Delay Time from the trigger to the first transition at the 50% crossing Time@Level When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Off, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to each rising edge at the 50% crossing in multiple frames (number = Count). Phase Phase difference between two edges FRR Time from the first rising edge of channel A to the following first rising edge of channel B FRF Time from the first rising edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B Time from the first falling edge of channel A to the following first falling edge of channel B Time from the first rising edge of channel A to the following first falling edge of channel B Time from the first falling edge of channel A to the following first falling edge of channel B Time from the first rising edge of channel A to the following first falling edge of channel B Time from the first rising edge of channel A to the following first falling edge of channel B Time from the first rising edge of channel A to the following first falling edge of channel B		Level@X	The voltage value of the trigger point	
+Wid Width measured at 50% level and positive slope -Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Time difference between the 50% threshold of a rising edge to the 50% threshold of the next falling edge of the pulse -Dut Time difference between the 50% threshold of a falling edge to the 50% threshold of the next rising edge of the pulse Delay Time from the trigger to the first transition at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Off, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to each rising edge at the 50% crossing in multiple frames (number = Count). Phase Phase difference between two edges FRR Time from the first rising edge of channel A to the following first rising edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B FFF Time from the first fisling edge of channel A to the following first falling edge of channel B FFF Time from the first rising edge of channel A to the following first falling edge of channel B FFF Time from the first rising edge of channel A to the following first falling edge of channel B FFF Time from the first rising edge of channel A to the following first falling edge of channel B FFF Time from the first rising edge of channel A to the last rising edge of channel B		Period	Time between the middle threshold points of two consecutive, like-polarity edges	
Horizontal (Time) -Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Time difference between the 50% threshold of a rising edge to the 50% threshold of the next falling edge of the pulse -Dut Time difference between the 50% threshold of a falling edge to the 50% threshold of the next rising edge of the pulse Delay Time from the trigger to the first transition at the 50% crossing Time@Level When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Off, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to each rising edge at the 50% crossing in multiple frames (number = Count). Phase Phase difference between two edges FRR Time from the first rising edge of channel A to the following first rising edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B		Freq	Reciprocal of period	
Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Time difference between the 50% threshold of a rising edge to the 50% threshold of the next falling edge of the pulse -Dut Time difference between the 50% threshold of a falling edge to the 50% threshold of the next rising edge of the pulse Delay Time from the trigger to the first transition at the 50% crossing Time@Level When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge of channel B Phase Phase difference between two edges FRR Time from the first rising edge of channel A to the following first rising edge of channel B FRF Time from the first falling edge of channel A to the following first rising edge of channel B FRF Time from the first rising edge of channel A to the following first falling edge of channel B LRR Time from the first rising edge of channel A to the last rising edge of channel B		+Wid	Width measured at 50% level and positive slope	
Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Time difference between the 50% threshold of a rising edge to the 50% threshold of the next falling edge of the pulse -Dut Time difference between the 50% threshold of a falling edge to the 50% threshold of the next rising edge of the pulse Delay Time from the trigger to the first transition at the 50% crossing Time@Level When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Off, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to each rising edge at the 50% crossing in multiple frames (number = Count). Phase Phase difference between two edges FRR Time from the first rising edge of channel A to the following first rising edge of channel B FRF Time from the first rising edge of channel A to the following first rising edge of channel B FRF Time from the first falling edge of channel A to the following first rising edge of channel B TIME from the first falling edge of channel A to the following first rising edge of channel B TIME from the first falling edge of channel A to the following first rising edge of channel B TIME from the first falling edge of channel A to the following first falling edge of channel B TIME from the first rising edge of channel A to the following first falling edge of channel B TIME from the first rising edge of channel A to the following first falling edge of channel B TIME from the first rising edge of channel A to the following first falling edge of channel B TIME from the first rising edge of channel A to the following edge of channel B		-Wid	Width measured at 50% level and negative slope	
Horizontal (Time) Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Time difference between the 50% threshold of a rising edge to the 50% threshold of the next falling edge of the pulse -Dut Time difference between the 50% threshold of a falling edge to the 50% threshold of the next rising edge of the pulse Delay Time from the trigger to the first transition at the 50% crossing Time@Level When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is On, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to each rising edge at the 50% crossing in multiple frames (number = Count). Phase Phase difference between two edges FRR Time from the first rising edge of channel A to the following first rising edge of channel B FRF Time from the first falling edge of channel A to the following first falling edge of channel B FFR Time from the first falling edge of channel A to the following first falling edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B FFF Time from the first rising edge of channel A to the following first falling edge of channel B FFF Time from the first rising edge of channel A to the following first falling edge of channel B FFF Time from the first rising edge of channel A to the following first falling edge of channel B Time from the first rising edge of channel A to the following first falling edge of channel B		Rise Time	Duration of rising edge from 10-90%	
Horizontal (Time) Dut Time difference between the 50% threshold of a rising edge to the 50% threshold of the next falling edge of the pulse		Fall Time	Duration of falling edge from 90-10%	
pulse -Dut Time difference between the 50% threshold of a falling edge to the 50% threshold of the next rising edge of the pulse Delay Time from the trigger to the first transition at the 50% crossing Time@Level When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Off, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to each rising edge at the 50% crossing in multiple frames (number = Count). Phase Phase difference between two edges FRR Time from the first rising edge of channel A to the following first rising edge of channel B FRF Time from the first rising edge of channel A to the following first falling edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B Time from the first falling edge of channel A to the following first falling edge of channel B Time from the first falling edge of channel A to the following first falling edge of channel B Time from the first falling edge of channel A to the following first falling edge of channel B Time from the first rising edge of channel A to the following first falling edge of channel B Time from the first rising edge of channel A to the last rising edge of channel B Time from the first falling edge of channel A to the following first falling edge of channel B	Horizontal (Time)	Bwid		
pulse Delay Time from the trigger to the first transition at the 50% crossing Time@Level When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is On, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to each rising edge at the 50% crossing in multiple frames (number = Count). Phase Phase difference between two edges FRR Time from the first rising edge of channel A to the following first rising edge of channel B FRF Time from the first rising edge of channel A to the following first falling edge of channel B FFR Time from the first falling edge of channel A to the following first rising edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B LRR Time from the first rising edge of channel A to the following first falling edge of channel B Time from the first rising edge of channel A to the following first falling edge of channel B Time from the first rising edge of channel A to the following first falling edge of channel B Time from the first rising edge of channel A to the last rising edge of channel B		+Dut	3 3	
Time@Level Time from the trigger to each rising edge at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is On, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to each rising edge at the 50% crossing in multiple frames (number = Count). Phase Phase difference between two edges FRR Time from the first rising edge of channel A to the following first rising edge of channel B FRF Time from the first rising edge of channel A to the following first falling edge of channel B FFR Time from the first falling edge of channel A to the following first rising edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B LRR Time from the first rising edge of channel A to the last rising edge of channel B		-Dut		
When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is On, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to each rising edge at the 50% crossing in multiple frames (number = Count). Phase Phase difference between two edges FRR Time from the first rising edge of channel A to the following first rising edge of channel B FRF Time from the first rising edge of channel A to the following first rising edge of channel B FFR Time from the first falling edge of channel A to the following first rising edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B LRR Time from the first rising edge of channel A to the last rising edge of channel B		Delay	Time from the trigger to the first transition at the 50% crossing	
FRR Time from the first rising edge of channel A to the following first rising edge of channel B FRF Time from the first rising edge of channel A to the following first falling edge of channel B FFR Time from the first falling edge of channel A to the following first rising edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B LRR Time from the first rising edge of channel A to the last rising edge of channel B		Time@Level	When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is On, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to each	
FRF Time from the first rising edge of channel A to the following first falling edge of channel B FFR Time from the first falling edge of channel A to the following first rising edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B LRR Time from the first rising edge of channel A to the last rising edge of channel B		Phase	Phase difference between two edges	
FFR Time from the first falling edge of channel A to the following first rising edge of channel B FFF Time from the first falling edge of channel A to the following first falling edge of channel B LRR Time from the first rising edge of channel A to the last rising edge of channel B	Delay	FRR	Time from the first rising edge of channel A to the following first rising edge of channel B	
Delay FFF Time from the first falling edge of channel A to the following first falling edge of channel B LRR Time from the first rising edge of channel A to the last rising edge of channel B		FRF	Time from the first rising edge of channel A to the following first falling edge of channel B	
Delay LRR Time from the first rising edge of channel A to the last rising edge of channel B		FFR	Time from the first falling edge of channel A to the following first rising edge of channel B	
LRR Time from the first rising edge of channel A to the last rising edge of channel B		FFF	Time from the first falling edge of channel A to the following first falling edge of channel B	
		LRR	Time from the first rising edge of channel A to the last rising edge of channel B	
LRF Time from the first rising edge of channel A to the last falling edge of channel B		LRF	Time from the first rising edge of channel A to the last falling edge of channel B	
LFR Time from the first falling edge of channel A to the last rising edge of channel B		LFR	Time from the first falling edge of channel A to the last rising edge of channel B	
LFF Time from the first falling edge of channel A to the last falling edge of channel B		LFF	Time from the first falling edge of channel A to the last falling edge of channel B	
Skew Time of source A edge minus time of nearest source B edge		Skew	Time of source A edge minus time of nearest source B edge	

Measurement	
Cursors	Manual : Time X1, X2, (X1 -X2), (1/ΔT) Voltage Y1, Y2, (Y1 -Y2) Track: Time X1, X2, (X1 -X2)
Statistics	Current, Mean, Min, Max, Stdev, Count
Counter	Hardware 6-digit counter (channels are selectable)

Math Function	
Operation	+ , - , * , / , FFT, d/dt, ∫dt, √
FFT window	Rectangular, Blackman, Hanning, Hamming, Flattop
FFT display	Full Screen, Split, Exclusive

USB AWG Module (option)			
Channel	1		
Max. Output Frequency	25 MHz		
Sampling Rate	125 MSa/s		
Frequency Resolution	1 μHz		
Frequency Accuracy	±50 ppm		
Vertical Resolution	14-bit		
Amplitude Dange	$-1.5 \sim +1.5 \text{ V (50 } \Omega \text{ load)}$		
Amplitude Range	-3 ~ +3 V (High-Z load)		
Waveform Type	Sine, Square, Ramp, Pulse, Noise, DC and 45 built-in waveforms		
Output impedance	$50 \Omega \pm 2\%$		
Protection	Over-Voltage Protection, Current-Limiting Protection		
Insulation Voltage	±42 Vpk (for SAG2021I only)		
Sine			
Frequency	1 μHz ~ 25 MHz		
Offset Accuracy (10 kHz)	± (1%*Offset Setting Value +3 mVpp)		
Amplitude flatness (10 kHz, 5 Vpp)	±0.3 dB		
	DC ~ 1 MHz -60 dBc		
SFDR	1 MHz ~ 5 MHz -55 dBc		
	5 MHz ~ 25 MHz -50 dBc		
HD	$DC \sim 5 \text{ MHz}$ -50 dBc		
TID	5 MHz ~ 25 MHz -45 dBc		
Square/Pulse			
Frequency	$1 \mu Hz \sim 10 \text{ MHz}$		
Duty Cycle	1% ~ 99%		
Rise/Fall Time	< 24 ns (10% ~ 90%)		
Overshoot (1 kHz, 1 Vpp, Typical)	< 3% (typical 1 kHz, 1 Vpp)		
Pulse Width	> 50 ns		
Jitter	< 500 ps + 10 ppm		
Ramp			
Frequency	1 μHz ~ 300 kHz		
Linearity (Typical)	< 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 50% Symmetry)		
Symmetry	0% ~ 100%		

DC			
Officet range	±1.5 V (50 Ω load)		
Offset range	±3 V (High-Z load)		
Accuracy	± (offset * 1% + 3 mV)		
Noise	Noise		
Bandwidth	> 25 MHz (-3 dB)		
Arbitrary Wave			
Frequency	1 μHz ~ 5 MHz		
Wave Length	16 kpts		
Sampling Rate	125 MSa/s		
Lead In	EasyWave and U-Disk		

Digital Channels (option)		
No. of Channels	16	
Max. Sampling Rate	1 GSa/s	
Memory Depth	14 Mpts/CH	
Min. Detectable Pulse Width	4 ns	
Level Group	D0 ~ D7, D8 ~ D15	
Level Range	-8 V ~ 8 V	
Logic Type	TTL, CMOS, LVCMOS3.3, LVCMOS2.5, custom	
Skew[2]	$D0 \sim D15$: ± 1 sampling interval Digital to Analog: \pm (1 sampling interval +1 ns)	

I/O	
Standard	USB Host*2, USB Device, LAN, Pass/Fail, Trigger Out
Pass/Fail	3.3 V TTL Output

Display (Screen)		
Display Type	7-inch TFT LCD	
Display Resolution	800 × 480 pixels	
Display Color	24-bit	
Contrast (Typical)	500:1	
Backlight	300 nits	
Range	8 x 14 divisions	

Display (Waveform)		
Display Mode	Dot, Vector	
Persist Time	Off, 1 Sec, 5 Sec, 10 Sec, 30 Sec, Infinite	
Color Display	Normal, Color	
Screen Saver	1 min, 5 min, 10 min, 30 min, 1 hour, Off	
Language	Simplified Chinese, Traditional Chinese, English, French, Japanese, Korean, German, Russian, Italian, Portuguese	

Environments	
Temperature	Operating: 10°C ∼ +40°C
	Non-operating: -20°C ~ +60°C
Humidity	Operating: 85% RH, 40°C , 24 hours
	Non-operating: 85% RH, 65°C , 24 hours
Height	Operating: ≤3000 m
	Non-operating: ≤15,266 m
Compliance	LVD IEC 61010-1:2010
	EMC EN6 1326-1:2013

Power Supply	
Input Voltage	100 - 240 Vrms (± 10%), 50 / 60 Hz 100 - 120 Vrms (± 10%), 400 Hz
Power	50W Max

Mechanical		
Dimensions	Length: 312 mm	
	Width: 132.6 mm	
	Height: 151 mm	
Weight	N.W: 2.6 kg; G.W: 3.8 kg	

Probes and Accessories

Probe	Model	Picture	Description
	PP510		
Passive	PP215		Bandwidth: 200 MHz, 1X/10X, 1 M/10 Mohm, 300 V/600 V Bandwidth: 350 MHz, 1X/10X, 1 M/1 Mohm, 150 V/300 V
	SP2035	3000 O	
	CP4020		Bandwidth: 100 KHz, Max. continuous current: 20 Arms, Peak current: 60 A Switch Ratio: 50 mV/A, 5 mV/A, Accuracy: 50 mV/A (0.4 A-10 Apk) \pm 2%, 5 mV/A (1 A-60 Apk) \pm 2%, 9 V battery source
	CP4050		Bandwidth: 1MHz, Max. continuous current: 50Arms, Peak current: 140 A Switch Ratio: 500 mV/A, 50 mV/A Accuracy: 500 mV/A (20 mA -14ApK) \pm 3% \pm 20 mA , 50 mV/A (200 mA -100 ApK) \pm 4% \pm 200 mA, 50 mV/A (100 A -140 ApK) \pm 15% max, 9 V battery source
	CP4070		Bandwidth: 150 kHz, Max. continuous current: 70 Arms, Peak current: 200 A Switch Ratio: 50 mV/A, 5 mV/A, Accuracy: 50 mV/A (0.4 A -10 ApK) \pm 2% , 5 mV/A (1 A -200 ApK) \pm 2%, 9 V battery source
Current Probe	CP5030		Bandwidth: 50 MHz, Max. continuous current: 30 Arms, Peak current: 50 A Switch Ratio: 100 mV/A, 1 V/A, Accuracy: 1 V/A (\pm 1% \pm 1mA), 100 mV/A (\pm 1% \pm 10 mA), DC 12 V/ 1.2 A power adapter
	CP5030A		Bandwidth: 100 MHz, Max. continuous current: 30 Arms, Peak current: 50 A Switch Ratio: 100 mV/A, 1 V/A, Accuracy: 1 V/A (\pm 1% \pm 1 mA), 100 mV/A (\pm 1% \pm 10 mA), DC 12V/1.2 A power adapter
	CP5150		Bandwidth: 12 MHz, Max. continuous current: 150 Arms, Peak current: 300 A Switch Ratio: 100 mV/A, 10 mV/A, Accuracy: 100 mV/A (\pm 1% \pm 10 mA), 10 mV/A (\pm 1% \pm 100 mA), DC 12 V/1.2 A power adapter
	CP5500		Bandwidth: 5 MHz, Max. continuous current: 500 Arms, Peak current: 750 A Switch Ratio: 100 mV/A, 10 mV/A, Accuracy: 100 mV/A (\pm 1% \pm 10 mA), 10 mV/A (\pm 1% \pm 100 mA), DC 12 V/1.2 A power adapter
Differential Probe	DPB4080		Bandwidth: 50 MHz, Differential Range: 800 V (DC + Peak AC), 100X/200X/500X/1000X, Accuracy: ±1%, DC 9 V/1 A power adapter
	DPB5150		Bandwidth: 70 MHz, Differential Range: 1500 V (DC + Peak AC), 50X/500X Accuracy: ± 2%, DC 5 V/1A USB adapter

Probe	Model	Picture	Description
	DPB5150A		Bandwidth: 100 MHz, Differential Range: 1500 V (DC + Peak AC), 50X/500X , Accuracy: ±2% DC 5 V/1 A USB adapter
	DPB5700		Bandwidth: 70 MHz, Differential Range: 7000 V (DC + Peak AC), 100X/1000X , Accuracy: ±2%, DC 5 V/1 A USB adapter
	DPB5700A		Bandwidth: 100 MHz Differential Range: 7000 V (DC + Peak AC), 100X/1000X Accuracy: ±2% DC 5 V/1 A USB adapter
High Voltage	HPB4010		Bandwidth: 40 MHz Differential Range: DC 10 KV, AC (rms): 7 KV (sine), AC (Vpp): 20 KV (Pulse) 1000X Accuracy: ≤3%
Isolated front end	ISFE	Commence of the commence of th	Provides isolation between standard oscilloscope channels, isolation between the measured signal and ground. Uses USB 5 V power supply, plug and play. The maximum input voltage allowed is up to \pm 600 Vpk
Demo Board	STB-3 Test Board		Output signals including square, sine, AM, fast edge, pulse, PWM, I2C, CAN, LIN etc. Used in teaching and demonstrations
USB AWG Module	SAG1021	SAG1021 non-stream Fallentener Stream \$\sigma_{\sigma} \text{SIGLENT}\$	Output Sine, Square, Ramp, pulse, Noise, DC and 45 built-in waveforms. The arbitrary waveforms can be accessed and edited by the EasyWave PC software
Rack Mount	SDS1X-E-RMK		The height is 4U

Ordering information			
	SDS2000X-E Series Digital Oscilloscope		
Product Name	SDS2202X-E 200 MHz		
	SDS2352X-E 350 MHz		
	USB Cable -1		
	Quick Start -1		
Standard Accessories	Passive Probe -2		
	Certification of Calibration -1		
	Power Cord -1		
	16 Channels MSO Software	SDS2000X-E-16LA	
	16 Channels Logic Analyzer	SLA1016	
	AWG Software	SDS2000X-E-FG	
	USB Isolated AWG Module Hardware	SAG1021I	
	WIFI Software	SDS2000X-E-WIFI	
	USB WIFI Adapter	TL_WN725N	
Optional Accessories	Isolated Front End	ISFE	
	STB Demo Source	STB-3	
	High Voltage Probe	HPB4010	
	Current Probes	CP4020/CP4050/CP4070/CP4070A/CP5030/CP5030A/ CP5150/CP5500	
	Differential Probes	DPB4080/DPB5150/DPB5150A/DPB5700/DPB5700A	
	Rack Mount	SDS1X-E-RMK	

SDS2000X-E Series

Super Phosphor Oscilloscope

SIGLENT Technologies Co., Ltd Add: Bldg No.4 & No.5, Antongda Industrial Zone, 3rd Liuxian Road, Bao'an District, Shenzhen, 518101, China Tel: +86 755 3688 7876

Fax: +86 755 3359 1582 Email: sales@siglent.com Website: int.siglent.com

USA:

SIGLENT Technologies America, Inc 6557 Cochran Rd Solon, Ohio 44139 Tel: 440-398-5800 Toll Free: 877-515-5551

Fax: 440-399-1211 Email: info@siglent.com Website: www.siglentna.com

Europe

SIGLENT Technologies Germany GmbH Add: Liebigstrasse 2-20, Gebaeude 14, 22113 Hamburg Germany

Tel: +49(0)-819-95946 Fax: +49(0)-819-95947 Email: info-eu@siglent.com Website: www.siglenteu.com

About SIGLENT

SIGLENT is an international high-tech company, concentrating on R&D, sales, production and services of electronic test & measurement instruments.

SIGLENT first began developing digital oscilloscopes independently in 2002. After more than a decade of continuous development, SIGLENT has extended its product line to include digital oscilloscopes, function/arbitrary waveform generators, RF generators, digital multimeters, DC power supplies, spectrum analyzers, vector network analyzers, isolated handheld oscilloscopes, electronic load and other general purpose test instrumentation. Since its first oscilloscope, the ADS7000 series, was launched in 2005, SIGLENT has become the fastest growing manufacturer of digital oscilloscopes. We firmly believe that today SIGLENT is the best value in electronic test & measurement.

Follow us on Facebook: SiglentTech

